Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39116
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芝珊(Chih Shan Li)
dc.contributor.authorPei-Shih Chenen
dc.contributor.author陳培詩zh_TW
dc.date.accessioned2021-06-13T17:02:56Z-
dc.date.available2005-03-01
dc.date.copyright2005-03-01
dc.date.issued2005
dc.date.submitted2005-01-31
dc.identifier.citation1. A. L. Ballard, N. K. Fry, S. B. Surman, J. V. Lee, T. G. Harrison, and K. J. Towner, J. Clin. Microbio., 2000, 38, 4215.
2. M. P. Schafer, J. E. Fernback, and M. K. Ernst, Aerosol Sci. Tech., 1999, 30, 161.
3. C. S. Li, C. W. Hsu, and M. L. Tai, Arch. Environ. Heal., 1997, 52, 200.
4. G. H. Wan, and C. S. Li, Arch. Environ. Health., 1999, 54, 172.
5. R. L. Kepner, and J. R. Pratt, Microbiol. Rev., 1994, 58, 603.
6. E. S. Kaneshiro, M. A. Wyder, Y. P. Wu, and M. T. Cusion, J. microbiol. Methods, 1993, 17, 1.
7. R. Lopez-Amoros, J. Comas, and J. Vives-Rego, Appl. Environ. Microbiol., 1995, 61, 2521.
8. J. E. Uechert, P. Breeuwer, T. Abee, P. Stephens, G. N. von-Caron, and P. F. ter Steeg, J. Food Microbiol.1995, 28, 317.
9. H. L. Bank, Diabetologia, 1987, 30, 813.
10. D. B. Roszak, and R. E. Colwell, Microbiol. Rev., 1987, 51, 365.
11. M. Hernandez, S. L. Miller, D. W. Landfear, and J. M. Macher, Aerosol Sci. Tech., 1999, 30, 145.
12. P. C. DeLeo, and P. Baveye, Appl. Environ. Microbiol., 1996, 62, 4580.
13. G. B. J. Dubelaar, and J. J. Jonker, Sci. Mar., 2000, 64, 135.
14. J. Vive-Rego, P. Lebaron, and G. N. Caron, FEMS microbiol. Rev., 2000, 24, 429.
15. P. Day, D. B. Kelly, and G. W. Griffith, Appl. Environ. Microbiol., 2002, 68, 37.
16. J. L. Lange, P. S. Thorne, and N. Lynch, Appl. Environ. Microbiol., 1997, 63, 1557.
17. V. Prigione, G. Lingua, and V. F. Marchisio, Bio-technology, 2004, 70, 1360.
18. T. J. Mukoda, L. A. Todd, and M. D. Sobsey, J. Aerosol Sci., 1994, 25, 1523.
19. M. P. Schafer, J. E. Fernback, and P. A. Jensen, AIHA J, 1998, 59, 540.
20. G. H. Wan, S. H. Lu, and Y. H. Tsai, Am. J. Infect. Control, 2004, 32, 17.
21. A. J. Alvarez, M. P. Buttner, and L. D. Stetzenbach, Appl Environ Microbiol., 1995, 61,3639.
22. L. E. Desjardin, Y. Chen, M. D. Perkins, L. Teixeira, M. D. Cave, and K. D. Eisenach, J. Clin. Microbio., 1998, 36, 1964.
23. R. D. Oberst, M. P. Hays, L. K. Bohra, R. K. Phebus, C. T. Yamashiro, C. Paszko-Kolva, S. J. Flood, J. M. Sargeant, and J. R. Gillespie, Appl. Environ. Microbio., 1998, 64, 3389.
24. V. K. Sharma, E. A. Dean-Nystrom, and T. A. Casey, Molecular & Cellular Probes, 1999, 13, 291.
25. I. Hein, A. Lehner, P. Riech, K. Klein, E. Brandl, and M. Wagner, Appl. Environ. Microbio., 2001, 67, 3122.
26. A. S. Kaprelyants, and D. B. Kell, J. appli. Bacterial., 1992, 72, 410.
27. P. J. Jensen, W. F. Todd, G. N. David, and P. V. Scarpino, Am. Ind. Hyg. Assoc. J., 1992, 53, 660.
28. C. E. Corless, M. Guiver, R. Borrow, V. Edwards-Jones, E. B. Kaczmarski, A. J. Fox, J Clin Microbiol. 2000, 38, 1747.
29. E. W. Henningson, M. Lundquist, G. S. Larsson, and M. Forsman, J. Aerosol Sci., 1997, 28, 459.
30. M. E. Fuller, S. H. Streger, R. K. Rothmel, B. J. Mailloux, J. A. Hall, T. C. Onstott, J. K. Fredrikson, D. L. Balkwill, and M. F. Deflaun, Appl. Environ. Microbio., 2000, 66, 4486.
31. N. Wellinghausen, C. Frost, and R. Marre, App. Environ. Microbiol., 2001, 67, 3985.
32. J. R. Stults, O. Snoeyenbos-West, B. Methe, D. R. Lovley, and D. P. Chandler, Appl. Environ. Microbio., 2001, 67, 2781.
Amor, K. B., Breeuwer, P., Verbaarschot, P., Rombouts, F. M., Akkermans, D. L., De Vos, W. M., & Abee, T. 2002. Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl. Environ. Microbiol. 68: 5209-5216.
Ballard, A. L., Fry, N. K., Surman, S.B., Lee, J.V., Harrison, T. G., & Towner, K. J. 2000. Detection of Legionella pneumophila using a real-time PCR hybridization assay. J. Clin. Microbiol. 38: 4215-4218.
Davey, H. M, & Kelly, D. B. 1996. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses, Microbiol. Rev. 60: 641-696.
Day, J. P., Kell, D. B., & Griffith, G. W. 2002. Differentiation of Phytophthora infestans Sporangia from other airborne biological particles by flow cytometry. Appl. Environ. Microbiol. 68: 37-45.
DeLeo, P. C., & Baveye, P. 1996. Enumeration and biomass estimation of bacteria in aquifer microsom studies by flow cytometry. Appl. Environ. Microbiol. 62:4580-4586.
Del Giorgio, P. A., Prairie, Y. T., & Bird, D. F. 1997. Coupling between rates of bacterial production and the abundance of metabolically active bacteria is lakes, enumerated using CTC reduction and flow cytometry. Microb. Ecol. 34:144-145.
Dubelaar, G. B.J., & Jonker, J. J. 2000. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64:135-156.
Fuller, M.E., Streger, S.H., Rothmel, R.K., Mailloux, B.J., Hall, J.A., Onstott, T.C., Fredrikson, J.K., Balkwill, D.L., & Deflaun, M.F. 2000. Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments. Appl. Environ. Microbiol. 66:4486-4496.
Galbraith, D. W. 1989. Analysis of higher plants by flow cytometry and cell sorting. Int. Rev. Cytol. 116:165-228.
Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A., & Hagstrom, A. 1999. Significance of size and nucleic acid content heterogenecity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 65:4475-4483.
Glazer, A. N., & Rye, H. S. 1992. Stable dye- DNA intercalation complexes as reagents for high sensitivity fluorescent detection. Nature 359:859-861.
Gepras, R. I., Carter, J., Pearson, S. C., Paul, F. E., & Wilkinson, M. J. 1995. Development of robust flow cytometric assay for determining numbers of viable bacteria, Appl. Environ. Microbiol. 61: 2696-2701.
Griffiths, W. D., Stewart, I. W., Reading, A. R., & Futter, S. J. 1996. Effect of Aerosolization, Growth Phase and Resistence Time in Spray and Collection Fluids on Culturability of Cells and Spores. J. Aerosol Sci. 27:803-820.

Henningson, E. W., Krocova, Z., Sandstorm, G., and Forsman M. 1998. Flow Cytometric Assessment of the Survival Ratio of Francisella tularensis in Aerobiological Samples, FEMS Microbiology Ecology. 25:241-249.
Jensen, P. J., Todd, W. F., David, G. N., & Scarpino, P. V. 1992. Evaluation of Eight Bioaerosol Samplers Challenged with Aerosols of Free Bacteria. Am. Ind. Hygi. Assoc. J. 53:660-667.
Kaneshiro, E. S., Wyder, M. A., Wu, Y. P., & Cusion, M. T. 1993. Reliability of calcein acetoxy methyl ester and ethidium homodimer or propidium iodide for viability assessment of microbes. J. microbiol. methods 17:1-16.
Kaprelyants, A. S., & Kell, D. B. 1993. The use of 5-cyano-2,3-ditolyltetrazolium chloride and flow cytometry for the visualization of respiratory activity in individual cells of Micrococcus luteus. J. microbiol. methods, 17:115-122.
Kaprelyants, A. S., & Kell, D. B. 1992. Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry. J. Appl. Bacteriol. 72:410-422.
Lange, J. L., Thorne, P. S., & Lynch, N. 1997. Applications of flow cytometry and fluorescent in situ hybridization for assessment of exposure to airborne bacteria. Appl. Environ. Microbiol. 63:1557-1563.
Lebaron, P., Servais, P., Agogue, H., Courties, C., & Joux, F. 2001. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems. Appl. Environ. Microbiol. 67:1775-1782.
Lopez-Amoros, R., Comas, J., & Vives-Rego, J. 1995. Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propium iodide, and oxonol. Appl. Environ. Microbiol. 61:2521-2526.
Marie, D., Vaulot, D., & Partensky, F. 1996. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometry analysis of marine prokaryotes. Appl. Environ. Microbiol. 62:1649-1655.
Muirhead, K. A., Horan, P. K., & Poste, G. 1985. Flow cytometry: present and future. Bio-technology 3:337-356.
Prigione, V., Lingua, G., and Marchisio, V. F. 2004. Development and use of flow cytometry for detection of airborne fungi. Bio-technology 70:1360-1365.
Porter, K. G., Feig, Y. S. 1980. The use of DAPI for identifying and counting quatic microflora. Limnol. Oceanogr. 25:943-948.
Schafer, M. P., Fernback, J. E., & Ernst, M. K. 1999. Detection and characterization of airborne Mycobacterium tuberculosis H37Ra particles, a surrogate for airborne pathogenic M. tuberculosis. Aerosol Sci. Tech. 30:161-173.
Shapiro, H. M. 1995. Practical flow cytometry, 3rd ed., p. 2-31; 231-231. Alan R. Liss, Inc., New York, N.Y.
Sieracki, M. E., Cucci, T. L., & Nicinski, J. 1999. Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chloride activity of marine bacterioplankton in dilution cultures. Appl. Environ. Microbiol. 65:2409-2417.
Sneath, P. H. A. 1986. Endospore-forming Gram-Positive Rods and Cocci. In Bergey’s Manal of Systematic Bacteriology, edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt. Williams and Wilkins, Baltimore, MD, Vol. 2, pp. 1104-1139.
Sorenson, W. G., & Lewis, D. M. 1996. Organic dust toxic syndrome, p159-172. In D.H. Howard and J. D. Miller (ed.), The mycota VI. Springer-Verlag, Berlin, Germany.
Thorne, P. S., Kiekhaefer, M. S., Whitten, P., & Donham, K. J. 1992. Comparison of Bioaerosol Sampling Methods in Barns Housing Swine. Appl. Environ. Microbiol. 58:2543-2551.
Tzean, S. S., Chiu, S. C., Chen, J. L., Hseu, S. H., Lin, G. H., Liou, G. Y., Chen, C. C., & Hsu, W. H. 1994. Pencillium and Related Teleomorphs from Taiwan, CCRC Mycological Monograph No. 9. FIRDI, Hsinchu, Taiwan, R.O.C.
Ueckert, J. E., Breeuwer, P., Abee, T., Stephens, P., von-Caron, G. N. & ter Steeg, P. F. 1995. Flow cytometry in physiological study and detection of foodborne microorganisms. Int. J. Food Microbiol. 28:317-326.
Ulrich, S., Karrasch, B., Hoppe, H.G., Jeskulke, K., & Mehrens, M. 1996. Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride. Appl. Environ. Microbiol. 62:4587-4593.
Vive-Rego, J., Lebaron, P., & Caron, G. N. 2000. Current and future applications of flow cytometry in aquatic microbiology. FEMS microbiol. Rev. 24:429-448.
Winson, M. K., & Davey, H. M. 2000. Flow cytometric analyses of microorganisms. Methods 21:231-240.
Wouters, P. C., Bos, A. P., & Ueckert, J. 2001. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl. Environ. Microbiol. 67:3092-3101
Brachman, P. S., Enrlich, R., Eichenwald, H. F., Gabell, V. J., Kethley, T. W., Madin, S. H., Maltman, J. R., Middlebrook, G., Morton, J. D., Silver, I. H., and Wolfe, E. K. (1964). Standard Sampler for Assay of Airborne Microorganisms, Science 144:1295.
Chen, P. S., and Li, C. S. (2005). Bioaerosol Characterization by Flow Cytometry with Fluorochrome, Appl. Environ. Microbio. Revised.
Day, J., Kell, D., and Griffith, G. (2002). Diferentiation of Phytophthora Infestans Sporangia from Other Airborne Biological Particles by Flow Cytometry. Appl. Environ. Microbio. 68:37–45.
Eduard, W., and Heederik, D. (1998). Methods for Quantitative Assessment of Airborne Levels of Noninfectious Microorganisms in Highly Contaminated Work Environments, Am. Ind. Hygi. Assoc. J. 59:113-127.
Griffiths, W. D., Stewart, I. W., Reading, A. R., and Futter, S. J. (1996) Effect of Aerosolization, Growth Phase and Resistence Time in Spray and Collection Fluids on Culturability of Cells and Spores, J. Aerosol Sci. 27:803-820.
Heidelberg, J. F., Shahamat, M., Rahman, I., Stelma, G., Grim, C., and Colwell, R. R. (1997). Effect of Aerosolization on Culturability and Viability of Gram-Negative Bacteria, Appl. Environ. Microbio. 63:3585–3588.
Henningson, E. W., and Ahlberg, M. S. (1994). Evaluation of Microbiological Aerosol Samplers: A Review, J. Aerosol Sci. 25:1459-1492.
Henningson, E. W., Krocova, Z., Sandstorm, G., and Forsman M. (1998). Flow Cytometric Assessment of the Survival Ratio of Francisella tularensis in Aerobiological Samples, FEMS Microbiology Ecology. 25:241-249.
Hernandez, M., Miller, S. L., Landfear, D. W., and Macher, J. M. (1999). A Combined Fluorochrome Method for Quantitation of Metabolically Active and Inactive Airborne Bacteria, Aerosol Sci. Technol. 30:100-108.
Juozaitis, A., Willeke, K., Grinshpun, S. A., and Donnelly, J. (1994). Impaction onto a Glass Slide or Agar versus Impingement into a Liquid for the Collection and Recovery of Airborne Microorganisms, Appl. Environ. Microbio. 60:861–870.
Kaprelyants, A. S., and Kell, D. B. (1992). Rapid Assessment of Bacterial Viability and Vitality by Rhodamine 123 and Flow Cytometry, J. appli. Bacterial. 72:410-422.
Lange, J. L., Throne, P. S., and Lynch, N. (1997). Application of Flow Cytometry and Fluorescent in Situ Hybridization for Assessment of Exposure to Airborne Bacteria. Appl. Environ. Microbio. 63(4):1557–1563.
Li, C. S., Hao, M. L., Lin, W. H., and Chang, C. W. (1999). Evaluation of Microbial Samplers for Bacterial Microorganisms, Aerosol Sci. Technol. 30:100-108.
Lin, C. Y., and Li, C. S. (2002). Control Effectiveness of Ultraviolet Germicidal Irradiation on Bioaerosols, Aerosol Sci. Technol. 36:474-478.
Lin, W. H., and Li, C. S. (1998). The Effect of Sampling Time and Flow Rates on the Bioefficiency of Three Fungal Spore Sampling Methods, Aerosol Sci. Technol. 28:511-522.
Lin, W. H., and Li, C. S. (1999a). Collection Efficiency and Culturability of Impingement into a Liquid for Bioaerosols of Fungal Spores and Yeast Cells, Aerosol Sci. Technol. 30:109-118.
Lin, W. H., and Li, C. S. (1999b). Evaluation of Impingement and Filtration Methods for Yeast Bioaerosols Sampling, Aerosol Sci. Technol. 30:119-126.
May, K. R., and Harper, G. J. (1957). The Efficiency of Various Liquid Impinger Samplers in Bacterial Aerosols, Brit. J. Ind. Med. 14:289-297.
Oliver, J. D., Hite, F., McDougald, D., Andon, N. L., Simpson, L.M. (1995). Entry Into, and Resuscitation from, the Viable but Nonculturable State by Vibrio Vulnificus in An Estuarine Environment, Appl. Environ. Microbiol. 61(7):2624-30.
Oliver, J.D., Bockian, R. (1995) In Vivo Resuscitation, and Virulence Towards Mice, of Viable But Nonculturable Cells of Vibrio Vulnificus, Appl. Environ. Microbiol. 61(7):2620-3.
Sincock, S. A., Kulaga, H., Chain, M., Anderson, and P., Stopa, P. J. (1999). Application of Flow Cytometry for The Detection and Characterization of Biological Aerosols. Field Analytical Chemistry and technology, 3:291-306.
Sneath, P. H. A. (1986). Endospore-forming Gram-Positive Rods and Cocci. In Bergey’s Manal of Systematic Bacteriology, edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt. Williams and Wilkins, Baltimore, MD, Vol. 2, pp. 1104-1139.
Terzievza, S., Donnelly, J., Ulevius, V., Grinshpun, S. A.,Willeke, K., Stelma, G. N., and Brenner, K., (1996). Comparison of Methods for Detection and Enumeration of Airborne Microorganisms Collected by Liquid Impinger, Appl. Environ. Microbio. 62:2264–2272.
Thorne, P. S., Kiekhaefer, M. S., Whitten, P., and Donham, K. J. (1992). Comparison of Bioaerosol Sampling Methods in Barns Housing Swine, Appl. Environ. Microbiol. 58:2543-2551.
Tzean, S. S., Chiu, S. C., Chen, J. L., Hseu, S. H., Lin, G. H., Liou, G. Y., Chen, C. C., and Hsu, W. H. (1994). Pencillium and Related Teleomorphs from Taiwan, CCRC Mycological Monograph No. 9. FIRDI, Hsinchu, Taiwan, R.O.C.
Wong, H. C., Wang, P., Chen, S. Y., Chiu, S. W. (2004). Resuscitation of Viable but Non-Culturable Vibrio Parahaemolyticus in a Minimum Salt, FEMS Microbiol. Lett. 233(2):269-75.
Balasubramanian, V., Wiegeshaus, E. H., Taylor, B. T., and Smith, D. W. (1994). Pathogenesis of tuberculosis: pathway to apical localization. Tubercle and Lung Disease. 75:168 - 178.
Broccolo, F., Scarpellini, P., Locatelli, G., Zinngale, A., Brambilla, A. M., Cichero, P., Sechi, L. A., Lazzarin, A., Lusso, P., and Malnati, M. S. (2003). Rapid diagnosis of Mycobacterial infections and quantification of Mycobacterium tuberculosis load by two real-time calibrated PCR assay. J. Clin. Microbiol. 41:4565 - 72.
Cleary, T., Roudel, G., Casillas, O., and Miller, N. (2003). Rapid and specific detection of Mycobacterium tuberculosis by using the smart instrument and a specific fluorogenic probe. J. Clin. Microbiol. 41:4783 - 4786.
Desjardin, L. E., Chen, Y., Perkins, M. D., Teixeira, L., Cave, M. D., and Eisenach, K. D. (1998). Comparison of the ABI 7700 system (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis. J. Clin. Microbiol. 36:1964 - 1968.
Dye, C., Scheele, S., DOlin, P., Pathania, V., and Ravaglione, M. C. (1999). Global Burden of tuberculosis. Estimated incidence, prevalence and morality by country. JAMA 282:677 - 686.
Falkinham, J. O. (1996). Epidemiology of infection by nontuberculosis mycobacteria. Clin. Microbiol. 9:177 -215.
Hellyer, T., DesJardin, L. E., Assaf, M. K., Bates, J. H., Cave, M. D., and Eisenach, K. D. (1996). Specificity of IS6110-based amplification assays for Mycobacterium tuberculosis complex. J. Clin. Microbiol. 34:2843 - 2846.
Kraus, G., Cleary, T., Miller, N., Seivright, R., Young, A. K., Spruill, G., and Hnatyszyn, H. J. (2001). Rapid and specific detection of the Mycobacterium tuberculosis complex using fluorogenic probes and real-time PCR. Molecular and Cellular Probes 15:375 - 383.
Loudon, R. G., Bumgarner, L. R., Lacy, J., and Coffman, G. K. (1969). Aerial transmission of mycobacteria. Am. rev. respir. dis.100:165 - 171.
Macher, J. M., Alevantis, L. E., Chang, Y. L., and Lie, K. S. (1992). Effect of ultraviolet germicidal lamps on airborne microorganisms in an outpatient waiting room. Applied Occupational and Environmental Hygiene 7:505 - 513.
Martin, G., and Lazarus, A. (2000). Epidemiology and diagnosis of tuberculosis. Recognition of at-risk patients is key to detection. Postgraduate Medicine 108:42 - 44, 47 - 50, 53 - 54.
Mastorides, S. M., Oehler, R. L., Greene, J. N., Sinnott, J. T., Kranik, M., and Sandin, R. L. (1999).The detection of airborne tuberculosis using micropore membrane air sampling and polymerase chain reaction. Chest 115:15 – 25.
Miller, N., Cleary, T., Kraus, G., Young, A. K., and Spruill, G. (2002). Rapid and specific detection of Mycobacterium tuberculosis from acid-fast bacillus smear-positive respiratory specimens and BacT/ALERT MP culture bottles by using fluorogenic probes and real-time PCR. J. Clin. Microbiol. 40:4143 - 4147.
NIOSH 0900 method. (1998) “Mycobacterium tuberculosis, airborne”, in NIOSH Manual of Analytical Methods, Fourth edition.
Riley, R. L., Knight, M., and Middlebrook, G.. (1976). Ultraviolet susceptibility of BCG and virulent tubercle bacilli. Am. rev. respir. dis. 13:413 - 118.
Roger van Doorn, H., Class, E. C. J., Tampleton, K. T., van der Zanden, A. G. M., te Koppele Vije, A., de Jong, M. D., Dankert, J., and Kuigper, E. J. (2003). Detection of a point mutation associated with high-level isoniazid resistance in Mycobacterium tuberculosis by using real-time PCR technology with 3’-minor groove binder- DNA probes. J. Clin. Microbiol. 41:4630-4635.
Schafer, M. P., Fernback, J. E., and Jensen, P. A. (1998). Sampling and analytical method development for qualitative assessment of airborne mycobacterial speciec of Mycobacterium tuberculosis complex. AIHA J. 59:540 - 546.
Schafer, M. P., and Fernback, J. E. (1999). Detection and characterization of airborne Mycobacterium tuberculosis H37Ra particles, a surrogate for airborne pathogen M. tuberculosis. Aerosol Sci. Tech.30:161 - 173.
Shrestha, N. K., Tuohy, M. J., Hall, G. S., Reischl, U., Gordon, S. M., Procop, G. W. (2003). Detection and differentiation of Mycobacterium tuberculosis and nontuberculosis Mycobacterial isolates by real-time PCR. J. Clin. Microbiol. 41:5121 - 5126.
Wan, G. H., Lu, S. H., and Tsai Y. H. (2004). Polymerase chain reaction used for the detection of airborne Mycobacterium tuberculosis in health settings. Am. J. Infect. Control 32:17 – 22.
World Health organization. World Health report 2001. World Health organization, Geneva, Swizerland.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39116-
dc.description.abstract對於生物氣膠的評估來說,傳統的培養方法與顯微鏡計數方式,是相當的耗時、費力與較不精準的。因此,本研究以大腸桿菌為研究對象,在實驗室詳細評估螢光顯微鏡(EFM)、流式細胞儀(FCM)與即時定量聚合酵素連鎖反應法(real-time qPCR)等三種非培養方法相互間的關係,以及其與傳統培養方法間的關係,結果顯示,FCM所測得之總細胞濃度顯著的高於EFM所測得之總細胞濃度,且兩方法所得之總細胞濃度與活性均呈高度相關,在活性部分,以FCM所測得之活性最高,而以EFM所測得之活性最低。此外,由real-time qPCR測得的DNA濃度,也與FCM與EFM所測得之總細胞濃度成良好相關,因此,本研究指出,EFM、FCM與 real-time qPCR三種非培養方法均能對微生物濃度與活性測量提供相當快速與正確的資訊。
研究結果指出,FCM為一快速與可靠的方法,因此,針對流式細胞儀輔以螢光染色的技術(FCM/FL),再進行染劑條件、染色時間與分析條件的最佳化,結果顯示SYTO-13 與YOPRO-1的組合最能提供可靠的總濃度與活性定量,本研究也成功的將FCM /FL運用在醫院廢水處理廠中曝氣池的空氣樣本與水樣本分析,整體上, FCM/FL 被證明能夠成功的定量環境空氣與水中之細菌與真菌之濃度與活性。此外,也將FCM/FL運用於生物採樣器之採樣效率的評估,結果顯示,採樣過程對微生物活性的影響的主要因素為生物氣膠的特性(脆弱與否)與用來評估活性之採樣方式,其中以衝擊瓶為對活性影響較低之採樣方式。此外,過濾方式所產生的採樣壓力,對微生物之代謝機制的影響也較對細胞膜的影響為大,而且也跟其為細菌或真菌有關係。
最後,另一種非培養方法,real-time qPCR對空氣中致病的肺結核桿菌之分析方法,也被成功的建立與應用於肺結核病人負壓病房空氣中肺結核菌之定量。此方法的檢量線範圍可達106,而肺結核病人所在病房中,其空氣中肺結核桿菌的濃度範圍為1.43 x 10 copies/m3 到 2.06 x 105 copies/m3。此外,空氣中肺結核桿菌濃度與病人痰中肺結核桿菌濃度城中度相關。整體而言,本研究所建立之非培養方法,包括EFM、FCM與real-time qPCR的結果為環境微生物與生物氣膠的研究提供了相當有利的工具,未來也能針對各種環境微生物與生物氣膠的議題,進行更進一步的研究。
zh_TW
dc.description.abstractTraditional culture and microscopy methods for evaluation of bioaerosols are slow, tedious, and rather imprecise. Here, using pure suspensions of E. coli, three non-culture methods, namely, flow cytometry (FCM), epifluorescence microscopy (EFM), and real-time quantitative polymerase chain reaction (real-time qPCR), were compared with a traditional culture-based method. Then, the optimal conditions of FCM with 5 different fluorescent dyes (FCM/FL) were evaluated in laboratory samples and validated to field study. In addition, FCM/FL was applied to evaluate the sampling performance of impingement and filtration with different types of fluorescent dye staining (cell membrane integrity and metabolism) and then compared with a traditional culture method (culturability). Furthermore, real-time qPCR was develop and used to measure air concentration of M. tuberculosis in a health care setting.
In regard to the comparison of EFM, FCM, real-time qPCR and culture method, total cell concentrations determined using FCM were statistically higher (2.62 – 4.94 times) than those determined using EFM. In addition, EFM and FCM were highly associated for both the total cell concentration and viability. Furthermore, DNA concentrations measured by real-time qPCR with gene probe were highly associated with the total number concentrations measured by either the EFM or FCM. In summary, the three non-culture methods compared here could provide rapid and accurate information about microorganism concentrations and viabilities. For the FCM condition optimization, SYTO-13 was found to be the most suitable fluorescent dye for determining the total concentration of the bioaerosols, as well as YOPRO-1 was the most suitable for determining viability. Moreover, the established optimal FCM/FL with dyes was validated for characterizing microorganism profiles from both air and water samples from the aeration tank of hospital wastewater treatment plant. In conclusion, the FCM/FL successfully assessed the total concentration and viability for bacterial and fungal microorganisms in environmental field samples.
Regarding the sampling performance of bioaerosol samplers, the bioaerosol viability during the sampling processes was highly influenced by bioaerosol characteristics (hardy or fragile), as well as by the fluorescent dyes with different physiological mechanisms. For better viability of the sampled bioaerosol, the impinger was superior to the filter. Moreover, it was found that sampling stress from filtration had more influence on the bioaerosol metabolism mechanism than cell membrane integrity. Furthermore, the differences between cell membrane integrity and the metabolism by sampling stress were found related to the bioaerosol species. By using real-time qPCR, the present study was firstly developed a quantitative assay to measure air concentration of M. tuberculosis in a health care setting. The real-time qPCR method could perform measurements of counts over 6 orders of magnitude dynamic range with a great sensitivity. The airborne M. tuberculosis concentrations were found to vary widely from 1.43 x 10 copies/m3 to 2.06 x 105 copies/m3. In addition, airborne M. tuberculosis levels, smear and culture results of sputum samples were observed to be moderately correlated. In conclusion, FCM/FL and real-time qPCR were successfully established and applied to field study. In the future, they should be powerfully tools to provide more insight in the area of bioaerosols and environmental microbiology.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:02:56Z (GMT). No. of bitstreams: 1
ntu-94-F87844004-1.pdf: 832738 bytes, checksum: ee56905b195b5fc60fb035ad7775a682 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1. INTRODUCTION 1
1.1 Culture-based method 1
1.2 Noncultured-based methods 3
1.2.1 Microscopy 3
1.2.2 Flow cytometry (FCM) 5
1.2.3 Immunoassay 6
1.2.4 Biochemical assay 7
1.2.5 Molecular biological method 8
1.3 Chamber studies and Field Studies 11
1.3.1 Bacteria 12
1.3.2 Fungus 12
1.3.3 Interference 12
2. OBJECTIVES OF THE STUDY 15
3. REAL-TIME QUANTITATIVE PCR WITH GENE PROBE, FLUOROCHROME, AND FLOW CYTOMETRY FOR MICROORGANISM ANALYSIS 17
3.1 INTRODUCTION 17
3.2 MATERIALS AND METHOD 19
3.2.1 Test microorganism 19
3.2.2 EFM 19
3.2.3 FCM 20
3.2.4 Real-time qPCR with gene probe 20
3.2.5 Statistical methods 21
3.3 RESULTS AND DISCUSSION 22
3.3.1 Total cell concentration 22
3.3.2 Viability 25
3.4 CONCLUSION 27
3.5 REFERENCES 28
4. Bioaerosol Characterization by Flow Cytometry with Fluorochrome 34
4.1 INTRODUCTION 34
4.2. MATERIALS AND METHODS 37
4.2.1. Laboratory samples 37
4.2.2. Determination of Optimal Dyes and Staining Conditions 38
4.2.3. FCM 38
4.2.4. Viability and Culturability 40
4.2.5. Field Sample Collection and Analysis 40
4.3 RESULTS AND DISCUSSION 41
4.3.1 Laboratory Samples 41
4.3.2 Field Samples 44
4.4 CONCLUSION 46
4.5 REFERENCE 47
5. SAMPLING PERFORMANCE FOR BIOAEROSOLS BY FLOW CYTOMETRY WITH FLUOROCHROME 59
5.1 INTRODUCTION 59
5.2 MATERIALS AND METHODS 62
5.2.1 Test bioaerosols 62
5.2.2 Aerosol generation system 63
5.2.3 Bioaerosol samplers and sample processing 63
5.2.4 CFU counting 64
5.2.5 Dye and staining protocols 64
5.2.5 FCM 64
5.2.6 Indicators for sampling efficiency evaluation 65
5.3 RESULTS AND DISCUSSION 66
5.3.1 Culturability and viability in the nebulizer 66
5.3.2 Culturability and viability in bioaerosol samplers 67
5.3.3 CR and VR 68
5.4 CONCLUSION 70
5.5 REFERENCES 71
6. Concentration of Airborne Mycobacterium tuberculosis in Patient Rooms Measured using Real-Time qPCR Coupled to An Air-sampling Filter Method 75
6.1 INTRODUCTION 75
6.2 MATERIALS AND METHOD 77
6.2.1 Sampling location 77
6.2.2 Air sampling 77
6.2.3 DNA extraction method 77
6.2.4 ABI 7700 quantification 78
6.3 RESULTS AND DISCUSSION 80
6.3.1 Dynamic range and analytical sensitivity of real-time qPCR assay 80
6.3.2 Airborne M. tuberculosis in TB patient rooms 80
6.4 REFERENCES 86

LIST OF FIGURES
Fig. 2.1 Study Skeleton 15
Fig. 3.3.1 Dot plots of E. coli stained with AO and PI 29
Fig. 3.3.2 Comparison of total cell concentrations measured by using EFM and FCM 30
Fig. 3.3.3 (a). Calibration curve of DNA concentrations and Ct measured by using real-time qPCR. (b). Calibration curve of cell concentrations and Ct measured by using real-time qPCR 31
Fig. 3.3.4 Comparison of total cell concentrations measured by using EFM or FCM and DNA concentration measured by using real-time qPCR 32
Fig. 3.3.5 Comparison of measured-viability and controlled-viability measured by using EFM, FCM, and culture methods 33
Fig. 4.3.1 Contour plots from AO-stained 100% controlled-viability pure suspensions 49
Fig. 4.3.2 Contour plots from SYTO-13-stained 100% controlled-viability pure suspensions 50
Fig. 4.3.3 Contour plots PI-stained 60% controlled-viability pure suspensions 51
Fig. 4.3.4 Contour plots from YOPRO-1-stained 60% controlled-viability pure suspensions 52
Fig. 4.3.5 Contour plots from CTC-stained 100% controlled-viability pure suspension 53
Fig. 4.3.6 Contour plots from AO-stained 100% controlled-viability mixed suspension 54
Fig. 4.3.7 FCM/FL analysis of water (a1) and air samples (a2) with SYTO-13 55
Fig. 4.3.8 Total concentrations, viable counts determined, and culturable counts in water and air sample) collected on two different days from the aeration tank of a hospital effluent treatment plant in Taipei 56
Fig. 6.3.1 Calibration curve of known M. tuberculosis DNA concentrations and Ct by real-time qPCR 85
Fig. 6.3.2 (a). Correlation between airborne M. tuberculosis levels and smear results of sputum samples. (b). Correlation between airborne M. tuberculosis levels and sputum culture results……………………………………………………………….86
LIST OF TABLES
Table 3.3.1 Total and nonviable cell concentrations by EFM and FCM methods using AO and PI staining 33
Table 5.3.1 Culturabilities and viabilities of impinger and filter 75
Table 5.3.2 CR and VR of impinger and filter 76
Table 6.3.1 Tuberculosis patients characteristics and airborne M. tuberculosis concentrations .87
dc.language.isoen
dc.subject及時定量PCRzh_TW
dc.subject生物氣膠zh_TW
dc.subject螢光顯微鏡zh_TW
dc.subject非培養分析方法zh_TW
dc.subject流式細胞儀zh_TW
dc.subjectnon-culture based methoden
dc.subjectbioaerosolen
dc.subjectflow cytometryen
dc.subjectepifluorescence microscopyen
dc.subjectreal-time qPCRen
dc.title環境中生物氣膠之偵測 – 螢光顯微鏡、流式細胞儀與定量PCRzh_TW
dc.titleEnvironmental Bioaerosol Monitoring – Real-time quantitative PCR with Gene Probe, Fluorochrome and Flow Cytometryen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.oralexamcommittee張靜文(Ching -Wen Chang),蘇慧貞(Huey-Jen Su),蔡朋枝(Perng-Jy Tsai),陳志傑(Chih-Chieh Chen),韓柏檉(Bor-Cheng Han)
dc.subject.keyword生物氣膠,螢光顯微鏡,非培養分析方法,流式細胞儀,及時定量PCR,zh_TW
dc.subject.keywordflow cytometry,non-culture based method,bioaerosol,epifluorescence microscopy,real-time qPCR,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2005-01-31
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
813.22 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved