請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39114完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳正平(Jen-Ping Chen) | |
| dc.contributor.author | Gong-Do Hwang | en |
| dc.contributor.author | 黃公度 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:02:49Z | - |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-01-29 | |
| dc.identifier.citation | 陳宏榆, 1998,氣懸粒子物理特性之研究:核模粒子生成機制之探討, 台灣大學大氣科學系碩士論文。
范惠菱, 1999,氣懸粒子核化過程之數值模擬, 台灣大學大氣科學系碩士論文。 謝帷鈞, 2004,含碳物質對成雲之衝擊:焚雲效應與覆膜效應, 台灣大學大氣科學系碩士論文。 Abdul-Khalek, I. S., D. B. Kittelson, and F. Brear, 2000, Nanoparticle growth during dilution and cooling of diesel exhaust: Experimental investigation and theoretical assessment, SAE Technical Paper Ser. No. 2000-01-0515. Ball, S. M., D. R. Hanson,F. L. Eisele, and P. H. McMurry, 1999,Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J. Geophys. Res., 104, 23,709. Bagley, S. T., K. J. Baumgard, L. G. Gratz, J. H. Johnson, and D. G. Leddy, 1996, Characterization of fuel and aftertreatment devices effects on diesel emissions, Health Effects Institute, Reasearch Report No. 76 Baumgard, K. J.; Johnson, J. H. 1 996,SAE paper No. 960131. Chen, J. P., and Lamb, D., 1994: Simulation of cloud microphysical and chemical process Using a multicomponent framwork.Part I:Description of the microphysical model, J. Atmos. Sci., 51, 2613-2630. Chen, J. P., 1999,Particle nucleation by recondensation in combustion exhaust, Geophys. Res. Lett., 26, 2403-2406. Clarke, A. D., et al., 1998, Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources, Science, 282, 89. Crutzen, P. J., 1995, Ozone in the troposphere: a review, in Tropospheric Ozone, edited by I. S. A. Isaksen. Reidel, Dordrecht, 285-300. Jacobson M. Z., 2001, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 Kim, D.H., Gautam, M., Gera, D., 2001. On the prediction ofconcentration variations in a dispersing heavy-duty truck exhaust plume using k-epsilon turbulent closure. Atmos. Enviro. 35 (31), 5267–5275. Kittleson, D. B., 1998, Engine and nanoparticles: a review, J. Aerosol Sci., 29, 575-588. Kulmala, M., A. Laaksonen, Charlson, R J., Korhonen, P., 1997: Clouds without supersaturation, Nature, 388, 6640, 336-337 (24-Jul-1997) scientific correspondence. Kulmala, M., A. Laaksonen, and L. Pirjola, 1998, Parameterizations for sulfuric acid/water nucleation rates, J. Geophys. Res., 103, 8301-8307, Korhonen, P., Kulmala, M., Laaksonen, A., Viisanen, Y., McGraw,R., Seinfeld, J. H., 1999, Ternary nucleation of H2SO4,NH3,and H2O in the atmosphere , J. Geophys. Res., 104, 26349-26353. Liao, H.,Yung, Y. L., and Seinfeld, J. H., 1999: Effects of aerosols on tropospheric photolysis rates in clear an cloudy atmospheres, J. Grophy. Res., 104, 23697-23707. Lung, S.C. C., et. Al., 2004: Water-soluable Ions of Aerosols in Taipei in Spring 2002, T. A. O., 15(5), 901-924 Meng, Z., 1995: Time scale to achieve atmospheric gas-aerosol equilibrium for volatile species, Atmos. Environ., Vol. 30, No. 16, 2889-2900 Mirable, P. and Katz, J. L., 1974: Binary homogeneous nucleation as a mechanism for the formation of aerosol, J.Chem.Phys., 60, 1138-1144. Pandis, S. N., J. H., Seinfeld, and C. Pillins, 1992, Heterogeneous sulfate production in an urban fog, Atmos. Environ., 26A, 2509-2522. Reist, P. C., 1993, Aerosol science and technology, McGraw-Hill Inc., New York. Seinfeld, J. H, 1998: Clouds, contrails and climate, Nature, 391, 6670, 837-838 (26- Feb-1998) news and views. Seinfeld, J. H., and Pandis, S. N., 1998b: Atmospheric chemistry and Physics, John Wiley and Sons Inc., New York. Shi, J. P., and R. M. Harrison, 1999: Investigation of ultrafine particle formation during diesel exhaust dilution, Environ. Sci. Technol., 33, 3730-3736. Tobias H. J., E. B. Derek, P. J. Ziemann, H. Sakurai,M. Zuk, P. H. cmurry, D. Zarling, R. Waytulonis, and D. B. Kittleson, 2001: Chemical analysis of diesel engine nanoparticles using a nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer, Environ. Sci. Technol., 35, 2233-2243. Twomey , S. A.,1977: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149-1152. Weber, R. J., J. J. Marti, P. H. McMurry, F. L. Eisele, D. J. Tanner, and A. Jefferson, 1997, Measurement of new particle formation and ultrafine particle growth rates at a clean continental site. J. Geophys. Res., 102, 4375-4385. Whitby , K. T., 1978: The physical characteristics of sulfur aerosols, Atmos. Environ., 12, 135-159. Young, K. C., 1975: The evolution of drop spectrua due to condensation,coalescence and Breakup, J. Atmos. Science, 32, 965-973. Yu, F., 2001, Chemiions and nanoparticle in diesel engine exhaust, Geophys. Res. Lett., 28, 4191-4194. Yue, G. K., and Hamill, P., 1979: The homogeneous nucleation rates of H2SO4-H2O aerosol particles in air, J. Aerosol Sci., 10, 609-614. Zhang K. M., and Wexler A. S., 2004: Evolution of particle number near roadways-Part I: analysis of aerosol dynamics and its implications for engine emission measurement, Atmos. Environ., 38, 6643-6653 Zhang, K.M., Wexler, A.S., Zhu, Y., Hinds, W.C., Sioutas, C.,2004. Evolution of particle number distribution near roadwaysPart II: the ‘Road-to-Ambient’ Process. Atmo. Environ., 38, 6655-6665 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39114 | - |
| dc.description.abstract | Chen(1999)分析台北地區1997年秋季晴天的氣懸粒子濃度與PM10 (粒徑小於10 的氣懸粒子)總質量,發現氣懸粒子數量濃度與PM10總質量除了存在與通勤活動有關的雙峰型態外,數量濃度的主要成長時間發生在無光化作用的清晨。Chen(1999)認為此現象與都市環境中交通工具的引擎燃燒對氣懸粒子的粒徑譜改變有關,而提出”再凝結核化機制”。本研究主要就分析、實驗與數值模擬來進一步探討”再凝結核化機制及其對機車排放的影響。
實驗發現濾除空氣中大部份粒子能降低排放出之氣懸粒子濃度約一個數量級。直接吸入環境的氣懸粒子或加入特定硫酸銨濃度以上的粒子時,排氣中的氣懸粒子數量濃度達到約106 即不再增加。 數值模擬上,在典型的都市背景氣懸粒子蒸發所得的硫酸與汽油燃燒產生的硫酸濃度,核化速率對粒子總數量影響並不大。核化產生粒子到一定數量後(即一定表面積),凝結對酸氣的競爭便較核化為強,主宰接下來粒徑的演化。 研究引擎燃燒排放所產生的氣懸粒子時,不僅燃油中的硫含量需考慮,吸入引擎內的氣懸粒子所含的化學成份亦相當重要。本研究結果可用來推估機動車輛所產生的氣懸粒子個數,但進一步與大氣混合的氣懸粒子徑譜演化需考慮更多氣象與邊界層之因子。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:02:49Z (GMT). No. of bitstreams: 1 ntu-94-R88229019-1.pdf: 1068239 bytes, checksum: 05665e66023e49fa1c6490b880e1af8f (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘要............................................................................................................I
目錄...........................................................................................................II 圖表目錄..................................................................................................IV 第一章 前言............................................................................................1 第二章 影響氣懸粒子粒徑譜之物理化學過程....................................9 2-1可凝結氣體來源與消耗..................................................................9 2-2 核化機制.......................................................................................10 2-3 凝結(condensation)與蒸發(evaporation) ...................................11 2-4 混凝(coagulation)…...…………………………………………...12 2-5 其它可能影響因素…...………………………………………....12 第三章 機車排放實驗…...……………………………………….......14 3-1 實驗設計…...………………………………………....................14 3-2 實驗儀器簡介...............................................................................16 A. 氣懸粒子產生器........................................................................16 B. 氣懸粒子徑譜儀........................................................................17 3-3 實驗結果與討論...........................................................................18 第四章 數值模擬..................................................................................22 4-1 模式架構.......................................................................................22 4-1-1 雙組份核化模組...................................................................22 4-1-2 數值架構...............................................................................22 4-1-3 混凝過程...............................................................................23 4.2 實驗設計.......................................................................................23 4.3 結果與討論...................................................................................24 a. 核化速率大小的影響.................................................................24 b. 與環境混合的影響.....................................................................25 c. 環境相對濕度的影響.................................................................26 d. 氣懸粒子數量濃度與分布的影響.............................................26 e. 粒子蒸發比例的影響.................................................................27 第五章 結論與討論..............................................................................29 5-1 實驗部份.......................................................................................29 5-2 數值模擬部份...............................................................................29 5-3 討論與應用...................................................................................30 參考文獻..................................................................................................32 | |
| dc.language.iso | zh-TW | |
| dc.subject | 粒徑譜 | zh_TW |
| dc.subject | 氣膠 | zh_TW |
| dc.subject | 空氣污染 | zh_TW |
| dc.subject | 引擎排放 | zh_TW |
| dc.subject | aerosol | en |
| dc.subject | air pollution | en |
| dc.subject | emission | en |
| dc.title | 引擎排放對氣膠粒徑譜之影響 | zh_TW |
| dc.title | aerosol in gasoline engine emission | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王國英(Kuo-ying Wang),龍世俊(Shi-Chun Candice Lung),周崇光(Charles C.-K. Chou),劉紹臣(Shaw Chen Liu) | |
| dc.subject.keyword | 氣膠,粒徑譜,空氣污染,引擎排放, | zh_TW |
| dc.subject.keyword | emission,aerosol,air pollution, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-01-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
