請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39113完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華(Ming-Hua Mao) | |
| dc.contributor.author | Shao-Fang Wang | en |
| dc.contributor.author | 王卲芳 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:02:46Z | - |
| dc.date.available | 2005-02-04 | |
| dc.date.copyright | 2005-02-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-01-29 | |
| dc.identifier.citation | [1] C. Harder, J. Katz, S. Margalot, J. Shacham, and A. Yariv, Fellow, IEEE “Noise Equivalent Circuit lf a Semiconductor Laser Diode” IEEE J. Quantum Electron., vol. QE-18, No. 3, March 1982.
[2] Ch. S. Harder, B. J. Van Zeghbroeck, M. P. Kesler, H. P. Meier, P. Vettiger, D. J. Webb, and P. Wolf “High-speed GaAs/AlGaAs optoelectronic devices for computer applications” IBM J. Res. Develop. ,vol. 34, pp.568-583, July 1990. [3] D. Bimberg, M. Grundmann, N. N. Ledentsov, “Quantum Dot Heterostructures,” [4] J. Katz, S. Margalit, C. Harder, D. Wilt, and A. Yarive “The Intrinsic Electrical Equivalent Circuit of a Laser Diode” IEEE J. Quantum Electron., vol. QE-17, No. 1, January 1981. [5] J. D. Ralston, S. Weisser, I. Esquivias, E. C. Larkins, J. Rosenzweig, P. J. Tasker, and J. Fleissner, “Control of differential gain, nonlinear gain, and damping factor for high-speed applications of GaAs-based MQW lasers,” IEEE J. Quantum Electron., vol. 29, pp. 1648-1659, 1993. [6] L. A. Coldren S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits.” [7] M. O. Vassell, W. F. Sharfin, W. C. Rideout, and J. Lee, “Competing effects of well-barrier hole burning and nonlinear gain on the resonance characteristics of quantum-well lasers,” IEEE J. Quantum Electron., vol.29, pp. 1319-1329, 1993. [8] M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, and B. J. Lee, “Equivalent Circuit Model of Quantum-Well Lasers,” IEEE J. Quantum Electron., vol. 31, pp. 1418-1421, 1995. [9] M. Sugawara, Optical Semiconductor Device Laboratory Fujitsu Laboratories Ltd Atsugi Japan, “Self-Assembled InGaAs/GaAs Quqntum Dots.” [10] N. Tessler, R. Nagar, and G. Eisenstein, “Structure dependent modulation responses in quantum-well lasers,” IEEE J. Quantum Electron., vol. 28, pp. 2242-2250, 1992. [11] N. Tessler, Student Member, IEEE, Ron Nagar, and Gade Eisenstein, Senior Member, IEEE, “Structure Dependent Modulation Responses in Quamtum-Well lasers,” IEEE J. Quantum Electron., vol. 28, pp. 2242-2250, 1992. [12] R. Nagarjan, M. Ishikawa, T. Fukushima, R. S. Geels. And J.E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron., vol. 28, pp. 1990-2008, 1992. [13] R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Technol., vol. 31, pp. 289-294, 1983. [14] R. Nagarajan, T. Fukrshima, a) Scott W. Cott W. Corzine, and John E. Bowers, Department of Electrical and Computer Engineering, University of Californiam Santa Barbara, Calofornia 93106, “Effects of carrier transport on high-speed quantum well lasers,” Appl. Phys. Lett., vol 59(15), pp. 1835-1837, 1991. [15] R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, Mimber, IEEE, and John E. Bowers, Senior Mimber, IEEE, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron., vol. 28, pp. 1990-2008, 1992. [16] S. Weisser, I. Esquivias, P. J. Tasker, J. D. Ralston, Member, IEEE, B. Romero, and J. Rosenzxeig “Impedance Characteristics of Quantum-Well Lasers” IEEE Photon. Technol. Lett., vol. 6, pp.1421-1423, 1994. [17] S. C. Kan and K. Y. Lau, “Intrinsic equivalent circuit of quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 4, pp.528-530, 1992. [18] S. Weisser, I. Esquivias, P. J. Tasker, J. D. Ralston, and J. Rosenzweig, “Impedance, modulation response, and equivalent circuit of ultra-high-speed In0.35Ga0.65As/GaAs MQW lasers with p-doping,” IEEE Photon. Technol. Lett., vol. 6, no. 4, pp.782-785, 1994. [19] S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture lomited modulation bandwidth of quantum well, wire, and dot lasers,” Appl. Phys. Lett., vol 62, pp. 2307-2309, 1993. [20] T. C. Wu, S. C. Kan, D. Vassilovski, K. Y. Lau, C. E. Zah, B. Pathak, and T. P. Lee, “Gain compression in tensile strained 1.55 quantum well lasers operating at first and second quantized states,” Appl. Phys. Lett., vol 60, pp. 1794-1796, 1992. [21] G. E. Giudice, D. V. Kuksinkov, Member, IEEE and H. Temkin, Fellow IEEE, “Measurement of Differential Carrier Lifetime in Vertical-Cavity Surface-Emitting lasers” IEEE Photonics technology letters, vol.10, No.7 July 1998. [22] G.. E. Shtengel, G. L. BELENKY, M. S. HYBERTSEN, R. F. KAZARINOV, and D. A. ACKERMAN, “ADVANCES IN MEASUREMENTS OF PHYSICAL PARAMETERS OF SEMICONDUCTOR LASERS,” [23] D. Klotzkin, K. Kamath, and P. Bhattacharya, “Quantum capture times at room temperature in high-speed In0.4Ga0.6As-GaAs self-Organized quantum-dot lasers” IEEE Photonics technology letters, vol.9, No.10 July 1997. [24] I. Esquivias, Member, IEEE, Weisser, B. Romero, J. D. Ralston, Life Member, IEEE, and J. Rosenzweig, “Carrier dynamics and microwave characteristics of GaAs-Bases quantum-well lasers,” IEEE J. Quantum Electron., vol. 35, pp. 635-644, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39113 | - |
| dc.description.abstract | 近年來,雷射二極體已經儼然成為光通訊元件中重要的一環。他的應用廣泛,像是光碟片讀取乃至於將訊號傳輸至主機,以致於光纖通訊系統,半導體雷射都扮演著不可或缺的角色。
關於半導體雷射特性的量測方法有非常多種,其中關於高頻電性的量測可以得到許多有用的資訊。譬如,我們可以藉由量測雷射阻抗特性中獲取鬆弛共振頻率。這個方法比直接透過光學量測調變頻寬更為方便。我們也可以用雷射暫態分析來探討調變頻寬,但同樣地實驗架構也較為複雜。 在本論文當中,我們以電性的觀點切入半導體雷射的主題,並由電的特性建立半導體雷射之等效電路模型。我們也探討了高頻阻抗量測的侷限,更進一步直接透過光學量測調變頻寬,並與雷射暫態的實驗結果相互比較與分析。 此外,我們也討論了許多雷射相關的重要參數,包括二極體微分電阻,理想因子,以及載子的各種時間參數對應於電路模型上的意義。 | zh_TW |
| dc.description.abstract | Diode laser have become an important commercial component. They are used in a wide variety of applications ranging from the readout sources in compact disk players to the transmitters in optical fiber communication systems.
There are various measurement techniques to explore different properties of laser diodes. One of them is the high-frequency electrical characterization which can provide us lots of useful information. For example, we can measure the relaxation oscillation frequency of laser diodes through impedance characterization. This technique is elegant and proves to be an easier way than direct measurement of optical modulation bandwidth. We can also investigate laser modulation bandwidth from the transient analysis, but again the experimental setup is more complicated. In this paper, we investigate the properties laser diodes throught electrical characterization and build up their equivalent circuit models. We also discuss the limit of impedance measurement and try further the direct optical measurement of modulation bandwidth. These results will be compared with those of laser transient experiments. Furthermore, we discuss various important diode parameters, such as differential diode resistance, ideality factor, and the carrier time constants, and their corresponding meaning in the circuit model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:02:46Z (GMT). No. of bitstreams: 1 ntu-94-R91941040-1.pdf: 1197605 bytes, checksum: e5fbe00a06e84844693885783710e4d6 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 謝詞 I
論文摘要 III THESIS ABSTRACT V Table of Contents VII List of Figures IX List of Tables 1 Chapter 1 Introduction 2 1.1 Background 2 Chapter 2 Rate equations and equivalent circuit models 6 2.1 Introduction 6 2.2 Energy diagram 7 2.3 Rate equations 8 2.4 Several parameters of semiconductor lasers 13 2.5 / relatd to impedance characteristics 18 2.6 Circuit model for semiconductor lasers (intrinsic) 21 2.7 Rate equations of semiconductor lasers (with excited state / wetting layer) 25 2.8 Circuit model of semiconductor lasers (with excited state / or wetting layer) 30 2.9 Impedance characteristics of semiconductor lasers 33 2.10 Photon modulation response of semiconductor lasers 36 2.11 Ground state circuit and simulation results 37 2.12 Chip with mount package model 45 2.13 Summary 47 Chapter 3 Experimental results and conclusions 48 3.1 Introduction 48 3.2 Impedance characteristics 48 3.3 Impedance measurements 49 3.3.1 Experimental setup 49 3.3.2 Impedance characteristics of semiconductor lasers 50 3.3.3 Experimental results 55 3.4 Optical modulation response 59 3.4.1 Experimental setup 59 3.5 Experimental results 60 3.6 Conclusions 64 Chapter 4 Future work 66 Reference 67 | |
| dc.language.iso | en | |
| dc.subject | 調變響應 | zh_TW |
| dc.subject | 半導體雷射 | zh_TW |
| dc.subject | 等效電路 | zh_TW |
| dc.subject | 鬆弛震盪頻率 | zh_TW |
| dc.subject | 阻抗 | zh_TW |
| dc.subject | impedance | en |
| dc.subject | equivalent circuit model | en |
| dc.subject | modulation response | en |
| dc.subject | relaxation oscillation frequency | en |
| dc.subject | optical response | en |
| dc.subject | semiconductor lasers | en |
| dc.title | 半導體雷射之高頻電光特性 | zh_TW |
| dc.title | High-Frequency Electrical and Optical Characterization of Semiconductor Lasers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林浩雄(Hao-Hsiung Lin),瞿大雄(Tah-Hsiung Chu) | |
| dc.subject.keyword | 半導體雷射,等效電路,鬆弛震盪頻率,阻抗,調變響應, | zh_TW |
| dc.subject.keyword | equivalent circuit model,modulation response,relaxation oscillation frequency,optical response,semiconductor lasers,impedance, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-01-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
