Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39027
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor謝正勇,溫振源
dc.contributor.authorYa-Fen Jiang-Shiehen
dc.contributor.author江謝雅芬zh_TW
dc.date.accessioned2021-06-13T16:58:10Z-
dc.date.available2015-01-01
dc.date.copyright2005-04-22
dc.date.issued2005
dc.date.submitted2005-04-18
dc.identifier.citationAdachi A, Natesan AK, Whitfield-Rucker MG et al.( 2002) Functional melatonin receptors and metabolic coupling in cultured chick astrocytes. Glia 39:268-278
Ahlgren S, Li GL, Olsson Y. (1996) Accumulation of beta-amyloid precursor protein and ubiquitin in axons after spinal cord trauma in humans: immunohistochemical observations on autopsy material. Acta Neuropathol (Berl). 92(1):49-55.
Aldskogius H and Kozlova EN. (1998) Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol. 55(1):1-26.
Arendt, J. (1985) Mammalian pineal rhythms. Pineal Res. Rev., 3:161-213.
Azzi G, Bernaudin JF, Bouchaud C et al. (1990) Permeability of the normal rat brain, spinal cord and dorsal root ganglia microcirculations to immunoglobulins G. Biol Cell 68:31-36.
Bernatowicz A, Kodel U, Frei K et al.(1995) Production of nitrite by primary rat astrocytes in response to pneumococci. J Neuroimmunol 60:53-61.
Besancon R, Simonneaux V, Jouvet A, Belin MF, Fevre-Montange M. (1996) Nycthemeral expression of tryptophan hydroxylase mRNAs in the rat pineal gland. Brain Res Mol Brain Res. 40(1):136-8.
Binkley, S.A. (1974) Pineal and melatonin: Circadian rhythms and body temperature of sparrows, in: Chronobiology, pp. 582-585. Eds L. E. Scheving, F. Halberg, J. Pasley and E. Grades. Shoin Press, Tokyo
Bluthe RM, Dantzer R, Kelley KW. (1992) Effects of interleukin-1 receptor antagonist on the behavioral effects of lipopolysaccharide in rat. Brain Res 573:318-320.
Borjigin J, Wang MM, Snyder SH. (1995) Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. : Nature. 378(6559):783-5.
Bowers CW, Baldwin C, Zigmond RE. (1984) Sympathetic reinnervation of the pineal gland after postganglionic nerve lesion does not restore normal pineal function. J Neurosci. 4(8):2010-5
Calvo, J., and Boya, J. (1983) Postnatal development of cell types in the rat pineal gland. J. Anat., 137:185-195.
Calvo, J., and Boya, J. (1984a) Postnatal evolution of the rat pineal gland: light microscopy. J. Anat., 138:45-53.
Calvo, J., and Boya, J. (1984b) Ultrastructure of the pineal gland in the adult rat. J. Anat., 138:405-409.
Calvo, J., and Boya, J. (1985) Ultrastructure of the rat pineal stalk. Acta Anat. (Basel), 123:172-177.
Calvo J, Boya J, Borregon A, Garcia-Maurino JE. (1988) Presence of glial cells in the rat pineal gland: a light and electron microscopic. immunohistochemical study. Anat Rec 220(4):424-428.
Cardinali DP, Vacas MI. (1987) Cellular and molecular mechanisms controlling melatonin release by mammalian pineal glands. Cell Mol Neurobiol. 7(4):323-37.
Cassone VM. (1998) Melatonin's role in vertebrate circadian rhythms. Chronobiol Int.; 15(5): 457-73.
Cleveland MG, Gorham JD, Murphy TL, Tuomanen E, Murphy KM. (1996) Lipoteichoic acid preparations of gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immun; 64:1906-1912.
Colosetti P, Olsson T, Miyazono K, Funa K. (1995) Axotomy of rat facial nerve induces TGF-beta and latent TGF-beta binding protein. Brain Res Bull. 37(6):561-7.
Coltman BW, Ide CF. (1996) Temporal characterization of microglia, IL-1 beta-like immunoreactivity and astrocytes in the dentate gyrus of hippocampal organotypic slice cultures. Int J Dev Neurosci. 14(6):707-19.
de Vries HE, Blom-Roosemalen MC, de Boer AG et al. (1996) Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J Pharmacol Exp Ther 277:1418-1423.
Delgado, M.J., and Vivien-Roels, B. (1989) Effect of environmental temperature and photoperiod on melatonin levels in the pineal, lateral eye, and plasma of frog, Rana perezi: Importance of ocular melatonin. Gen. Comp. Endocr. 75:46-53.
Diehl BJ. Time-related changes in size of nuclei of pinealocytes in rats. (1981) Cell Tissue Res 218(2):427-438.
Dombrowski TA, McNulty JA. (1984) Morphometric analysis of the pineal complex of the golden hamster over a 24-hour light:dark cycle: I. The superficial pineal in untreated and optically enucleated animals. Am J Anat; 171(4):359-368.
Dornay M, Gilad VH, Gilad GM. (1985) Compensatory changes in contralateral sympathetic neurons of the superior cervical ganglion and in their terminals in the pineal gland following unilateral ganglionectomy. J Neurosci. 5(6):1522-6.
Drijfhout WJ, van der Linde AG, de Vries JB, Grol CJ, Westerink BH. (1996) Microdialysis reveals dynamics of coupling between noradrenaline release and melatonin secretion in conscious rats. Neurosci Lett. 202(3):185-8.
Dunn AJ, Welch J. (1991) Stress- and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. J Neurochem 57:1615-1622.
Ehret M, Pevet P, Maitre M. (1991) Tryptophan hydroxylase synthesis is induced by 3',5'-cyclic adenosine monophosphate during circadian rhythm in the rat pineal gland. J Neurochem. 57(5):1516-21.
Engelmann R, Dieterich DC, Bien A et al.( 2001) A different retinal glia response to optic nerve injury/lipopolysaccharide administration in hooded and albino rats. Brain Res889:251-255.
Eriksson NP, Persson JK, Svensson M, Arvidsson J, Molander C, Aldskogius H. (1993) A quantitative analysis of the microglial cell reaction in central primary sensory projection territories following peripheral nerve injury in the adult rat. Exp Brain Res. 96(1):19-27.
Erskine, D.J., and Hutchinson, V.H. (1981) Melatonin and behavioral thermoregulation in the turtle, Terrapene carolina triunguis. Physiol. Behav., 26:991-994.
Freyer D, Weih M, Weber JR et al.( 1996) Pneumococcal cell wall components induce nitric oxide synthase and TNF-alpha in astroglial-enriched cultures. Glia 16:1-6.
Ganguly S, Coon SL, Klein DC. (2002) Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res.; 309(1): 127-37.
Gauer F, Craft CM. (1996) Circadian regulation of hydroxyindole-O-methyltransferase mRNA levels in rat pineal and retina. Brain Res. 737(1-2):99-109
Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. (1993) Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 160(2):139-44
Gern, W.A., Duvall, D., and Nervina, J.M. (1986) Melatonin: A discussion of its evaluation and actions in vertebrates. Am. Zool. 26:985-996.
Gitto E, Karbownik M, Reiter RJ et al.( 2001) Effects of melatonin treatment in septic newborns. Pediatr Res 50:756-760
Graeber MB, Streit WJ, Kreutzberg GW. (1988) Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J Neurosci Res. 21(1):18-24.
Hattor Y, Kasai K, Akimoto K, Thiemermann C. (1997) Induction of NO synthesis by lipoteichoic acid from Staphylococcus aureus in J774 macrophages: involvement of a CD14-dependent pathway. Biochem Biophys Res Commun 233:375-379.
Hetier E, Ayala J, Bousseau A, Prochiantz A. (1991) Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res 86(2):407-13.
Hewing M, Bergmann M. (1985) Differential in the rat (Rattus norvegicus), gerbil (Meriones unguiculatus) and golden hamster (Mesocricetus auratus). Cell Tissue Res 241:149-154.
Hira Y, Sakai Y, Matsushima S. (1998) Quantitative light microscopic study on the heterogeneity in the superficial pineal gland of the rat. Anat Rec; 250(1):80-94.
Huang SK, Nobiling R, Schachner M, Taugner R. (1984) Interstitial and parenchymal cells in the pineal gland of the golden hamster. A combined thin-section, freeze-fracture and immunofluorescence study. Cell Tissue Res; 235(2):327-337.
Iizawa Y, Brown JF, Czuprynski CJ.( 1992) Early expression of cytokine mRNA in mice infected with Listeria monocytogenes. Infect Immun 60:4068-4073.
Jiang-Shieh YF, Wu CH, Chang ML, Shieh JY, Wen CY. (2003) Regional heterogeneity in immunoreactive macrophages/microglia in the rat pineal gland. J Pineal Res.; 35(1): 45-53.
Jiang-Shieh YF, Wu CH, Chien HF, Wei IH, Chang ML, Shieh JY, Wen CY. (2005) Reactive changes of interstitial glia and pinealocytes in the rat pineal gland challenged with cell wall components from gram-positive and -negative bacteria. J Pineal Res 38(1):17-26.
Kado M, Yoshida A, Hira Y, Sakai Y, Matsushima S.(1999) Light and electron microscopic immunocytochemical study on the innervation of the pineal gland of the tree shrew (Tupaia glis), with special reference to peptidergic synaptic junctions with pinealocytes. Brain Res.; 842(2): 359-75.
Kalaria RN, Bhatti SU, Palatinsky EA, Pennington DH, Shelton ER, Chan HW, Perry G, Lust WD. (1993) Accumulation of the beta amyloid precursor protein at sites of ischemic injury in rat brain. Neuroreport. 4(2):211-4.
Karasek M, Bartke A, Doherty PC. (1984) Effects of experimentally induced chronic hyperprolactinemia on the ultrastructure of pinealocytes in male rats. J Pineal Res; 1:237-244.
Karasek M, Zielinska A, Marek K, S. (2002) Effect of superior cervical ganglionectomy on the ultrastructure of pinealocytes in the Djungarian hamster (Phodopus sungorus): quantitative study. Neuroendocrinol Lett.; 23(5-6): 443-6.
Kaur C, Ling EA. (1992) Activation and re-expression of surface antigen in microglia following an epidural application of kainic acid in the rat brain. J Anat. 180 ( Pt 2):333-42.
Kaur C, Singh J, Lim MK, Ng BL, Yap EP, Ling EA (1995)The response of neurons and microglia to blast injury in the rat brain. Neuropathol Appl Neurobiol. 21(5): 369-77.
Kaur C, Wu CH, Ling EA.(1997a)Immunohistochemical and tracer studies of macrophages/microglia in the pineal gland of postnatal rats. J Pineal Res. 22(3): 137-44.
Kaur C. Singh J. Lim MK. Ng BL. Ling EA. (1997B) Macrophages/microglia as 'sensors' of injury in the pineal gland of rats following a non-penetrative blast. Neurosci Res 27:317-322.
Kaur C, Ling EA.( 1999) Effects of melatonin on macrophages/microglia in postnatal rat brain. J Pineal Res 26(3):158-168.
Kaur C, Srinivasan KN, Singh J, Peng CM, Ling EA. (2002)Plasma melatonin, pinealocyte morphology, and surface receptors/antigen expression on macrophages/microglia in the pineal gland following a high-altitude exposure. J Neurosci Res. 67(4): 533-43
Kawarabayashi T, Shoji M, Harigaya Y, Yamaguchi H, Hirai S. (1991) Expression of APP in the early stage of brain damage. Brain Res. 563(1-2):334-8.
Kelly JD, Fox LM, Lange CF, Bouchard CS, McNulty JA. (1993) Experimental autoimmune pinealitis in the rat: ultrastructure and quantitative immunocytochemical characterization of mononuclear infiltrate and MHC class II expression. Autoimmunity. 16(1):1-11.
Kengatharan M, De Kimpe SJ, Thiemermann C. (1996) Analysis of the signal transduction in the induction of nitric oxide synthase by lipoteichoic acid in macrophages. Br J Pharmacol; 117:1163-1170.
Kim YS, Tauber MG. (1996)Neurotoxicity of glia activated by gram-positive bacterial products depends on nitric oxide production. Infect Immun 64:3148-3153.
King TS, Steinlechner S, Reiter RJ. Does maximal serotonin N-acetyltransferase activity necessarily reflect maximal melatonin production in the rat pineal gland? Neurosci Lett 1984; 48:343-347.
Klein DC. (1985) Photoneural regulation of the mammalian pineal gland. Ciba Found Symp.117:38-56.
Klein DC, Auerbach DA, Weller JL.(1981) Seesaw signal processing in pineal cells: homologous sensitization of adrenergic stimulation of cyclic GMP accompanies homologous desensitization of beta-adrenergic stimulation of cyclic AMP. Proc Natl Acad Sci U S A. 78(7): 4625-9.
Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL. (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A. 87(4):1561-5.
Kuchel GA, Sherman RL, Zigmond RE. (1990) Recovery of function following unilateral denervation, but not unilateral decentralization, of the pineal gland as indicated by measurements of pineal melatonin content and urinary melatonin metabolites. Neuroscience. 37(2):413-20.
Kuchel GA. (1993) Alterations in target innervation and collateral sprouting in the aging sympathetic nervous system. Exp Neurol. 124(2):381-6.
Lee MT, Kaushansky K, Ralph P et al. (1990) Differential expression of M-CSF, G-CSF, and GM-CSF by human monocytes. J Leukoc Biol 47:275-282.
Lee SC, Liu W, Roth P et al.(1993) Macrophage colony-stimulating factor in human fetal astrocytes and microglia. Differential regulation by cytokines and lipopolysaccharide, and modulation of class II MHC on microglia. J Immunol 150:594-604.
Lew GM, Washko K, Quay WB. (1984) Quantitation of ultrastructural twenty-four-hour changes in pineal nuclear dimensions. J Pineal Res 1(1):61-68.
Li GL, Farooque M, Holtz A, Olsson Y. (1997) Effects of alpha-phenyl-N-tert-butyl nitrone (PBN) on compression injury of rat spinal cord. Free Radic Res 27(2):187-96.
Lidman O, Fraidakis M, Lycke N, Olson L, Olsson T, Piehl F. (2002) Facial nerve lesion response; strain differences but no involvement of IFN-gamma, STAT4 or STAT6. Neuroreport. 13(13):1589-93
Lingappa JR, Zigmond RE. (1987) A histochemical study of the adrenergic innervation of the rat pineal gland: evidence for overlap of the innervation from the two superior cervical ganglia and for sprouting following unilateral denervation. Neuroscience. 21(3):893-902.
Liu L, Kita T, Tanaka N et al, (1996) The expression of tumour necrosis factor in the hypothalamus after treatment with lipopolysaccharide. Int J Exp Pathol 77:37-44.
Loughlin AJ, Woodroofe MN, Cuzner ML. (1993) Modulation of interferon-gamma-induced major histocompatibility complex class II and Fc receptor expression on isolated microglia by transforming growth factor-beta 1, interleukin-4, noradrenaline and glucocorticoids. Immunology. 79(1):125-30
Lopez-Munoz F, Boya J, Calvo JL, Marin F. (1992) Immunohistochemical localization of glial fibrillary acidic protein (GFAP) in rat pineal stalk astrocytes. Histol Histopathol; 7(4):643-646.
Luo ZR, Schultz RL, Whitter EF, Vollrath L. (1984) Ultrastructural characterization of glial cells in the rat pineal gland with special reference to the pineal stalk. Anat Rec 210(4):663-674.
Maestroni GJ. Melatonin as a therapeutic agent in experimental endotoxic shock. J Pineal Res 1996; 20:84-89.
Mander TH, Morris JF. (1995) Immunophenotypic evidence for distinct populations of microglia in the rat hypothalamo-neurohypophysial system. Cell Tissue Res; 280(3):665-673.
Matsushima S, Reiter RJ. (1975) Ultrastructural observations at pineal gland capillaries in four rodent species. Am J Anat 143:265-281.
Matsushima S, Morisawa Y, Aida I, Abe K. (1983) Circadian variations in pinealocytes of the Chinese hamster, Cricetulus griseus. A quantitative electron-microscopic study. Cell Tissue Res; 228(2):231-244.
Matsushima S, Sakai Y, Hira Y, Oomori Y, Daikoku S. (1994) Immunohistochemical studies on sympathetic and non-sympathetic nerve fibers and neuronal cell bodies in the pineal gland of cotton rats, Sigmodon hispidus. Arch Histol Cytol 57(1):47-58
McClure CD, McMillan PJ, Miranda A. (1986) Demonstration of differential immunohistochemical localization of the neuron-specific enolase antigen in rat pinealocytes. Am J Anat 176(4):461-467.
McNulty JA, Kus L, Ottersen OP. (1992) Immunocytochemical and circadian biochemical analysis of neuroactive amino acids in the pineal gland of the rat: effect of superior cervical ganglionectomy. Cell Tissue Res. 269(3):515-23.
Meijer, J.H. (1991) Integration of visual information by suprachiasmatic nuclei, in: Suprachiasmatic Nucleus, Eds. D.C. Klein, R.Y. Moore and S.M. Reppert, pp. 107-119. Oxford University Press, Oxford.
McNulty JA, Kus L, Ottersen (1992) Immunocytochemical and circadian biochemical analysis of neuroactive amino acids in the pineal gland of the rat: effect of superior cervical ganglionectomy. Cell Tissue Res; 269(3): 515-23.
Miguez JM, Simonneaux V, Pevet P. (1997 )The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes. J Pineal Res 23:63-71.
Morath S, Stadelmaier A, Geyer A, Schmidt RR, Hartung T. (2002) Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. J Exp Med; 195:1635-1640.
Moller M, Ingild A, Bock E. (1978) Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res; 140(1): 1-13.
Moller M, Reuss S, Olcese J, Stehle J, Vollrath L. (1987) Central neural control of pineal melatonin synthesis in the rat. Experientia. 43(2):186-8.
Moller M, Masson-Pevet M, Pevet P. (1998) Annual variations of the NPYergic innervation of the pineal gland in the European hamster (Cricetus cricetus): a quantitative immunohistochemical study. Cell Tissue Res. 291(3): 423-31.
Moore RY. Neural control of the pineal gland. (1996) Behav Brain Res; 73(1-2): 125-30.
Mucha S, Zykinska K, Zerek-Melen G, Swietoslawski J, Stepien H. (1994) Effect of interleukin-1 on in vivo melatonin secretion by the pineal gland in rats. In: Advances in Pineal Research, Vol. 7, Maestroni GJM, Conti A, Reiter RJ eds., J. Libbey Co. Ltd.; pp. 177-181
Mundigler G, Delle-Karth G, Koreny M et al. (2002) Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med 30:536-540.
Oaknin S, Vaughan MK, Troiani ME et al. (1987) Injections of alpha-melanocyte stimulating hormone affect pineal serotonin, melatonin and N-acetyltransferase activity. Comp Biochem Physiol C 86:23-26.
Otsuka N, Tomonaga M, Ikeda K. (1991) Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury. Brain Res. 568(1-2):335-8.
Patrick D, Betts J, Frey EA et al. (1992) Haemophilus influenzae lipopolysaccharide disrupts confluent monolayers of bovine brain endothelial cells via a serum-dependent cytotoxic pathway. J Infect Dis 165:865-872.
Pedersen EB, Fox LM, Castro AJ, McNulty JA. (1993) Immunocytochemical and electron-microscopic characterization of macrophage/microglia cells and expression of class II major histocompatibility complex in the pineal gland of the rat. Cell Tissue Res; 272(2):257-265.
Pedersen EB, McNulty JA, Castro AJ, Fox LM, Zimmer J, Finsen B. (1997) Enriched immune-environment of blood-brain barrier deficient areas of normal adult rats. J Neuroimmunol; 76(1-2):117-131.
Pevet, P. (1979) Secretory processes in the mammalian pinealocyte under natural and experimental conditions. Prog. Brain Res., 52:149-194.
Pevet P, Bothorel B, Slotten H, Saboureau (2002) The chronobiotic properties of melatonin. Cell Tissue Res.; 309(1): 183-91.
Poeggeler, B., Balzer, I., Hardeland, R., and Lerchl, A. (1991) Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften, 78:268-269.
Pousset F, Fournier J, Legoux P et al.( 1996) Effect of serotonin on cytokine mRNA expression in rat hippocampal astrocytes. Brain Res Mol Brain Res 38:54-62.
Provis JM, Diaz CM, Penfold PL. (1996) Microglia in human retina: a heterogeneous population with distinct ontogenesis. Perspect Dev Neurobiol; 3(3):213-222.
Pitossi F, del Rey A, Kabiersch A, Besedovsky H. (1997) Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res; 48:287-298.
Quay, W.B. (1963) Circadian rhythm in rat pineal serotonin and its modification by estrous cycle and photoperiod. Gen. Comp. Endocr., 3:473-479.
Quay WB, Renzoni A. (1966) Twenty-four-hour rhythms in pineal mitotic activity and nuclear and nucleolar dimensions. Growth; 30(3):315-324.
Quan N, Sundar SK, Weiss JM. (1994) Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. J Neuroimmunol; 49:125-134.
Reiter, R.J., and Hester, R.J. (1966) Interrelationships of the pineal gland, the superior cervical ganglia, and the photoperiod in the regulation of the endocrine systems of hamsters. Endocrinology, 79:1168-1170
Reiter RJ, Rudeen PK, Banks AF, Rollag MD. (1979) Acute effects of unilateral or bilateral superior cervical ganglionectomy on rat pineal N-acetyltransferase activity and melatonin content. Experientia. 35(5):691-2.
Reiter RJ, Peters JF. (1984) Non-suppressibility by room light of pineal N-acetyltransferase activity and melatonin levels in two diurnally active rodents, the Mexican ground squirrel (Spermophilus mexicanus) and the eastern chipmunk (Tamias striatus). Endocr Res.; 10(2): 113-21
Reiter, R.J. (1991) Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocrine Rev., 12:151-180.
Reiter, R.J. (1993) The melatonin rhythm: both a clock and a calendar. Birkähuser Verlag Basel, 49:654-664.
Reuss, S., Semm, P., and Vollrath, L. (1985) Changes in the electrical activity of the rat pineal gland following stimulation of the cervical sympathetic ganglia. J. Autonomic Nervous System, 12:281-288.
Sakai Y, Hira Y, Matsushima S.(1996) Regional differences in the pineal gland of the cotton rat, Sigmodon hispidus: light microscopic, electron microscopic, and immunohistochemical observations. J Pineal Res 20(3):125-137.
Sato T, Kaneko M, Fujieda H, Deguchi T, Wake K. (1994) Analysis of the heterogeneity with bovine pineal gland by immunnohistochemistry and in situ hybridization. Cell Tissue Res; 277:201-209.
Sato T, Kaneko M, Hama A, Kusakari T, Fujieda H. (1996) Expression of class II MHC molecules in the rat pineal gland during development and effects of treatment with carbon tetrachloride. Cell Tissue Res; 284:65-76
Sawada M, Kondo N, Suzumura A et al.( 1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491:394-397.
Schachner M, Huang SK, Ziegelmuller P, Bizzini B, Taugner R. (1984) Glial cells in the pineal gland of mice and rats. A combined immunofluorescence and electron-microscopic study. Cell Tissue Res; 237(2):245-252.
Schmidley JW, Wissig SL.(1986) Anionic sites on the luminal surface of fenestrated and continuous capillaries of the CNS. Brain Res 363:265-271.
Sheridan MN, Reiter RJ. (1973) The fine structure of the pineal gland in the pocket gopher, Geomys bursarius. Am J Anat; 136(3):363-381.
Shigematsu K, McGeer PL. (1992) Accumulation of amyloid precursor protein in neurons after intraventricular injection of colchicine. Am J Pathol 140(4):787-94.
Sherriff FE, Bridges LR, Gentleman SM, Sivaloganathan S, Wilson S. (1994) Markers of axonal injury in post mortem human brain. Acta Neuropathol (Berl). 88(5):433-440.
Sherriff FE, Bridges LR, Sivaloganathan S. (1994) Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein. Acta Neuropathol (Berl). 1994;87(1):55-62
Shiotani, Y., Yamamoto, M., Shiosaka, S., Emson, P.C., Hillajard, C.J., Girgis, S. and Maclntry, I. (1986) Distribution and origins of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, vasoactive intestinal polypeptide (VIP)- and neuropeptide Y (NPY)-containing nerve fibers in the pineal gland of gerbils. Neurosci. Lett., 70:187-192.
Simonneaux V, Ribelayga C. (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 55(2):325-95.
Smith C, Anderton BH. (1994) Dorothy Russell Memorial Lecture. The molecular pathology of Alzheimer's disease: are we any closer to understanding the neurodegenerative process? Neuropathol Appl Neurobiol 20(4):322-38
Steinlechner S, King TS, Champney TH, Richardson BA, Reiter RJ. (1985) Pharmacological studies on the regulation of N-acetyltransferase activity and melatonin content of the pineal gland of the Syrian hamster. J Pineal Res. 2(2):109-19.
Streit WJ, Graeber MB, Kreutzberg GW. (1989) Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol.; 21(2-3): 117-23.
Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL. (2000) Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 61(1):10-20.
Stone JR, Singleton RH, Povlishock JT. (2000) Antibodies to the C-terminus of the β-amyloid precusor protein (APP): a site specific marker for the detection of trumatic axonal. Brain Res; 871:288-302.
Sugden, D. (1989) Melatonin biosynthesis in the mammalian pineal gland. Experientia, 45:922-932.
Takamiya A, Takeda M, Yoshida A et al. ( 2002) Inflammation induces serine protease inhibitor 3 expression in the rat pineal gland. Neuroscience 113:387-394.
Tsai SY, McNulty JA. (1999) Interleukin-1beta expression in the pineal gland of the rat. J Pineal Res; 27:42-48.
Tsai SY, O'Brien TE, McNulty JA. (2001) Microglia play a role in mediating the effects of cytokines on the structure and function of the rat pineal gland. Cell Tissue Res; 303:423-431.
Tsai SY, McNulty JA. (1997) Microglia in the pineal gland of the neonatal rat: characterization and effects on pinealocyte neurite length and serotonin content. Glia 20:243-253.
Uede T, Ishii Y, Matsuura A, Shimogawara I, Kikuchi K.(1981) Immunohistochemical study of lymphocytes in rat pineal gland: selective accumulation of T lymphocytes. Anat Rec. 199(2):239-47.
Vollrath, L. (1981) The pineal organ. In: Handbuch der Mikroskopischen Anatomie des Menschen. A. Oksche and L. Vollrath, eds., Springer, Berlin, Vol. VI, 7; pp. 661-665.
Welsh MG, Cameron IL, Reiter RJ. (1979) The pineal gland of the gerbil, Meriones unguiculatus. II. Morphometric analysis over a 24-hour period. Cell Tissue Res; 204(1):95-109
Walker RF, Aloyo VJ. (1985) Norepinephrine stimulates serotonin secretion from rat pineal glands in vitro. Brain Res 343:188-189.
Whiteside MB, Quan N, Herkenharn M. (1999) Induction of pituitary cytokine transcripts by peripheral lipopolysaccharide. J Neuroendocrinol 11:115-120.
Wispelwey B, Lesse AJ, Hansen EJ et al. Haemophilus influenzae lipopolysaccharide- induced blood brain barrier permeability during experimental meningitis in the rat. J Clin Invest 1988; 82:1339-1346.
Withyachumnarnkul B, Nonaka KO, Santana C, Attia AM, Reiter RJ. (1990) Interferon-gamma modulates melatonin production in rat pineal glands in organ culture. J Interferon Res; 10:403-411.
Wu CC, Chiao CW, Hsiao G et al. (2001) Melatonin prevents endotoxin-induced circulatory failure in rats. J Pineal Res 30:147-156.
Wu CH, Chien HF, Chang CY, Ling EA.(1997)Heterogeneity of antigen expression and lectin labeling on microglial cells in the olfactory bulb of adult rats. Neurosci Res; 28(1):67-75.
Zhang ET, Mikkelsen JD, Moller M. (1991) Tyrosine hydroxylase- and neuropeptide Y-immunoreactive nerve fibers in the pineal complex of untreated rats and rats following removal of the superior cervical ganglia. Cell Tissue Res. 265(1):63-71.
Zigmond RE, Baldwin C, Bowers CW. (1981) Rapid recovery of function after partial denervation of the rat pineal gland suggests a novel mechanism for neural plasticity. Proc Natl Acad Sci U S A. 78(6):3959-63.
Zigmond RE, Baldwin C, Bowers CW. (1985) Rapid recovery of pineal function after partial denervation: a possible role for heteroneuronal uptake of transmitter in modulating synaptic efficacy. J Neurosci. 5(1):142-50.
Zylinska K, Komorowski J, Robak T, Mucha S, Stepien H. (1995) Effect of granulocyte-macrophage colony stimulating factor and granulocyte colony stimulating factor on melatonin secretion in rats in vivo and in vitro studies. J Neuroimmunol; 56:187-190.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39027-
dc.description.abstract1. 大白鼠松果腺內的巨噬細胞/小神經膠細胞免疫分子特性的區域分布
本研究用巨嗜細胞專一性的抗體(OX-42,OX-6,ED-1 及ED-2)去辨識松果腺巨噬細胞/小神經膠細胞,試著去檢視成鼠松果腺內巨噬細胞/小神經膠細胞是否顯示不同免疫型態分佈於特別區域。每一種抗體(OX-42,OX-6,及ED-1)識別松果腺內巨噬細胞/小神經膠細胞其中一群細胞,然而非常少見ED-2反應的巨噬細胞/小神經膠細胞。本實驗計量研究顯示松果腺內巨噬細胞/小神經膠細胞表現補體第三型接受體(被OX-42標誌)比主要組織相容第二型抗原(被OX- 6標誌)或未知細胞質/溶小體抗原(被ED-1標誌)更多。以此種免疫組織化學染色法,我們發現巨噬細胞/小神經膠細胞廣泛的分佈在整個松果腺,尤其是被OX-42標誌的巨噬細胞/小神經膠細胞,該細胞均勻地分散在松果腺的背-腹側方向。在此腺體同樣的方向,被OX-42,OX-6標誌的巨噬細胞/小神經膠細胞主要位於中央區域。並且無論是何種免疫型態的巨噬細胞/小神經膠細胞很少分佈於松果腺遠端。很有趣地,被OX-6標誌的松果腺巨噬細胞/小神經膠細胞,其細胞密度明顯的呈現近-遠端梯度。除了不同區域的松果腺巨噬細胞/小神經膠細胞不同免疫型態,在大型血管周圍常發現明顯細胞聚集。經相鄰切片染色分析,這些聚集細胞大部分是圓形帶有不同免疫分子所組成。以參重免疫標誌及共軛焦掃瞄顯微鏡觀察,進一步證實松果腺巨噬細胞/小神經膠細胞可能擁有兩種不同抗原(ED-1+/OX-6+、OX-42+/OX-6+或OX-42+/ED-1+)。很明顯地,大多數巨噬細胞/小神經膠細胞均表現所有檢視的抗原(ED-1+/OX-6 +/OX-42+)。本研究結果指出成鼠松果腺巨噬細胞/小神經膠細胞免疫分子是異質性的,其分佈的不同也是依據不同的免疫表型。因此,我們認為松果腺巨噬細胞/小神經膠細胞免疫表型的不同是根據其所在的不同區域分佈,而這特殊性可能與松果腺免疫調節功能有關。
2. 葛蘭氏陰性及陽性菌產物對大白鼠松果腺內神經膠與松果腺細胞的影響
酯多醣是葛蘭氏陰性菌的主要發炎組成份,眾所周知會引起敗血症及活化中樞神經系統內的小神經膠細胞。相反的,葛蘭氏陽性菌產物對小神經膠細胞的作用,尤其是在沒有血腦障壁環境內的小神經膠細胞是值得探討。本實驗以一系列抗體OX-6、OX-42及ED-1研究,靜脈注射酯多醣或壁酯酸後,大白鼠松果腺巨噬細胞/小神經膠細胞的反應。這些抗體分別認識巨噬細胞的主要組織相容第二型抗原、補體第三型接受體及未知溶小體蛋白質。在大白鼠注射酯多醣(50 μg/kg) 48 小時之後犧牲,大白鼠松果腺巨噬細胞/小神經膠細胞密度及其OX-6、OX-42與ED-1免疫分子表現顯著增加。在大白鼠接受高劑量壁酯酸(20 mg/kg)後,松果腺巨噬細胞/小神經膠細胞OX-6及OX-42免疫活性也增加,但是ED-1並沒改變。在此同時,這兩種毒素皆會刺激標誌星狀神經膠細胞的神經膠絲酸蛋白增加。給予酯多醣或壁酯酸處理後,有一個有趣現象就是血清內的褪黑激素減少,而血清素免疫標誌卻是增加。電子鏡觀察下,松果腺細胞內有液泡化的現象,這些酯多醣或壁酯酸引發的液泡很顯然是來自於顆粒性內質網及高爾基氏體小囊。本實驗認為酯多醣及壁酯酸可以引發松果腺免疫反應,使松果腺巨噬細胞/小神經膠細胞及星狀神經膠細胞活化。另外,松果腺細胞的代謝及分泌活性可被葛蘭氏陽性及陰性菌產物所改變。
3. 摘除單側頸上神經節對於大白鼠松果腺巨噬細胞/小神經膠細胞的影響
普遍認為切斷周邊神經在神經受傷處及其遠端會發生一系列生化變化。由單核球分化而來的巨噬細胞侵入受傷區域以因應神經切斷的傷害。正常情況就存在該區域的其他巨噬細胞也會出現此處,在上述的變化過程中扮演重要的角色。本實驗乃探討大白鼠松果腺的巨噬細胞/小神經膠細胞因應單側摘除上頸神經節時的可能反應。在單側摘除上頸神經節後,松果腺巨噬細胞/小神經膠細胞的表面抗原,例如補體第三型接受體、組織相容第二型抗原及溶小體未知功能的蛋白質會全面的增加,特別是表現在松果腺去除神經支配的一側,而且每一種免疫分子呈現獨特的表現型式。有趣的是,顯著的免疫分子改變也發生在松果腺仍有神經支配的一側。然而,免疫分子的改變在同一松果腺切片上有神經支配與去除神經支配處之間沒有顯著差異。摘除上頸神經節造成松果腺內色氨酸水解酵素免疫反應快速減少,而在摘除後兩周恢復正常。這同時也造成松果腺細胞內調節褪黑激素合成的主要酵素--轉乙醯酵素的下降。單側摘除上頸神經節後,卻提高松果腺內類澱粉前驅蛋白表現,後者是神經纖維受傷的一個指標。在單側摘除上頸神經節所引發的種種改變中,松果腺巨噬細胞/小神經膠細胞活化的時程演變似乎與類澱粉前驅蛋白表現變化較一致。因此,結論松果腺巨噬細胞/小神經膠細胞對單側摘除上頸神經節的反應可能與交感神經纖維的退化有關。
zh_TW
dc.description.abstractRegional heterogeneity in immunoreactive macrophages/microglia in the rat pineal gland
Using specific macrophage antibodies (OX-42, OX-6, ED-1 and ED-2), this study attempted to examine the distribution of macrophages/microglia in the pineal gland of adult rats. Except for ED-2, all antibodies labeled distinct subpopulations of macrophages/ microglia in the gland; ED-2 labeling was hardly detectable. The quantitative study showed that the pineal macrophages/microglia expressing complement type 3 receptors (OX-42) were more numerous than those expressing the major histocompatibility complex class II antigen (OX-6) or unknown cytoplasmic/lysosomal antigens (ED-1). The pineal macrophages/ microglia were ubiquitous, especially the OX-42 labeled cells which were distributed from the dorsal to the ventral aspect of the gland. The macrophages/microglia labeled with OX-6 or ED-1 were localized mainly in the intermediate portion. Immunolabeled cells were sparsely distributed in the distal portion of the pineal gland. A notable feature was that the OX-6 labeled macrophages/microglia showed a proximal-distal gradient in cell density. Another interesting feature was the occurrence of prominent cell aggregations around the larger blood vessels. These cells were mostly round and exhibited different immunomolecules. Confocal microscopic study with triple immunolabeling further revealed that individual pineal macrophage/microglial cell possessed two or more different antigens (ED-1+/OX-6+, OX-42+/OX-6+ or OX-42+/ED-1+). Remarkably, a large population of them co-expressed ED-1+/OX-6+/ OX-42+. The present results have shown that the expression of immune molecules of pineal macrophages/microglia varies with the topographical distribution of the cells. It is suggested that this may be linked to their immunoregulatory functions in the gland.
Reactive changes of interstitial glia and pinealocytes in the rat pineal gland challenged with cell wall components from from gram-positive and –negative bacteria
Lipopolysaccharide (LPS), the major proinflammatory component of gram-negative bacteria, is well known to induce sepsis and microglial activation in the CNS. On the contrary, the effect of products from gram-positive bacteria especially in areas devoid of blood-brain barrier remains to be explored. In the present study, a panel of antibodies, namely, OX-6, OX-42 and ED-1 was used to study the response of microglia/macrophages in the pineal gland of rats given an intravenous LPS or lipoteichoic acid (LTA). These antibodies recognize MHC class II antigens, complement type 3 receptors and unknown lysosomal proteins in macrophages, respectively. In rats given LPS (50 mg/kg) injection and killed 48h later, the cell density and immunoexpression of OX-6, OX-42 and ED-1 in pineal microglia/macrophages were markedly increased. In rats receiving a high dose (20 mg/kg) of LTA, OX-42 and OX-6, immunoreactivities in pineal microglia/macrophages were also enhanced, but that of ED-1 was not. In addition, both bacterial toxins induced an increase in astrocytic profiles labelled by glial fibrillary acid protein. An interesting feature following LPS or LTA treatment was the lowering effect on serum melatonin, enhanced serotonin immunolabelling and cellular vacuolation as studied by electron microscopy in pinealocytes. The LPS- or LTA-induced vacuoles appeared to originate from the granular endoplasmic reticulum as well as the Golgi saccules. The present results suggest that LPS and LTA could induce immune responses of microglia/macrophages and astroglial activation in the pineal gland. Furthermore, the metabolic and secretory activity of pinealocytes was modified by products from both gram-positive and -negative bacteria.
Responses of the pineal macrophages/microglia following unilateral superior cervical ganglionectomy
It is well known that a series of biochemical changes occurs at the site of the lesion of transected peripheral nerve and distal to it. Macrophages differentiated from monocytes that invade the area in response to transection. Other macrophages normally present in situ also play important roles in these changes. This study was to examine whether pineal macrophages/microglia in rats respond to unilateral superior cervical ganglionectomy (USCGx). After USCGx, pineal macrophages/ microglia showed an overall increase in all antigens examined such as major histocompatibility complex class II antigen (MHC II), complement receptor type 3 (CR3), and lysosomal protein (ED1) of unknown function. Each immunomolecule displayed specific expression pattern during USCGx processes, in particular at the denervated site of pineals. Interestingly, a significant change of immunomolecules also occurred at innervated site of the pineal. However, there was no specific difference between the innervated and denervated site in the same pineal section examined. USCGx caused a rapid decrease of tyrosine hydroxylase immunoreactivity that backed to the normal amount at two weeks after USCGx. The latter also resulted in a decline of N-acetyltransferease, a key enzyme regulating the rate of melatonin synthesis but enhanced β-APP protein expression, which was a general marker for axonal injury. Among USCGx-induced alterations, the chorological changes of pineal macrophages/microglia activation seem to be parallel to those of β-APP protein expression. It was therefore concluded that responses of pineal macrophages/microglia to unilateral superior cervical ganglionectomy may be related to the axonal degeneration of sympathetic fibers.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:58:10Z (GMT). No. of bitstreams: 1
ntu-94-D88446001-1.pdf: 3570647 bytes, checksum: ec901f259192d2e8fc7c34b9c931772f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents第一章 摘要---------------------------------------- 1
第二章 緒論---------------------------------------- 8
第三章 材料與方法------------------------------- 18
第四章 結果---------------------------------------- 26
第五章 討論---------------------------------------- 33
參考文獻------------------------------------------------------------ 48
圖表及圖片說明--------------------------------------------------- 63
dc.language.isozh-TW
dc.subject松果腺zh_TW
dc.subject巨噬細胞/小神經膠細胞zh_TW
dc.subjectmacrophages/microgliaen
dc.subjectpineal glanden
dc.title正常大白鼠松果腺內巨噬細胞/小神經膠細胞的特性及經細菌毒素刺激或頸上神經節摘除後其免疫反應之研究zh_TW
dc.titleStudies on features and immune responses of pineal macrophages/microglia in the intact rats and those challenged with bacterial toxins or superior cervical ganglionectomyen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee謝松蒼,吳慶祥,劉江川
dc.subject.keyword松果腺,巨噬細胞/小神經膠細胞,zh_TW
dc.subject.keywordpineal gland,macrophages/microglia,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2005-04-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學研究所zh_TW
Appears in Collections:解剖學暨細胞生物學科所

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
3.49 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved