Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39019
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾四恭
dc.contributor.authorChao-Chien Changen
dc.contributor.author張朝謙zh_TW
dc.date.accessioned2021-06-13T16:57:45Z-
dc.date.available2005-05-13
dc.date.copyright2005-05-13
dc.date.issued2005
dc.date.submitted2005-04-29
dc.identifier.citationBae, H. S.; T. Yamagishi and Y. Suwa, 2002a, “ Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions”, Microbio., 148: 221-227
Bae, H. S.; T. Yamagishi and Y. Suwa, 2002b, “Developing and sustaining 3-chlorophenol-degrading populations in up-flow anaerobic column reactors under circum-denitrifying conditions”, Appl. Microbiol. Biotechnol., 59: 118-124
Ballapragada, B. S.; H. D. Stensel; J. A. Puhakka and J. F. Ferguson, 1997, ” Effect of hydrogen on reductive dechlorination of chlorinated ethenes”, Environ. Sci. Technol., 31: 1728-1734
Beltrame, B.; P. L. Beltrame; P. Carniti; D. Guardione and C. Lanzetta, 1988, ” Inhibiting action of chlorophenols on biodegradation of phenol and its correlation with structural properties of inhibitors”, Biotech. Bioeng., 31:821-828
Bouquard, C.; J. Ouazzani; J. C. Promé; Y. Michel-Briand and P. Plésiat, 1997, 'Dechlorination of atrazine by a Rhizobium sp. isolate', Appl. Environ. Microbiol., 63: 862-866
Boyd, S.A.; D. R. Shelton; D. Berry and J. M. Tiedje, 1983, ”Anaerobic biodegradation of phenolic compounds in digested sludge”, Appl. Environ. Microbiol., 46:50-54
Boyd, S. A. and D. R. Shelton, 1984, ”Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge”, Appl. Environ. Microbiol., 47:272-277
Boyle, A. W.; C. D. Phelps and L. Y. Young, 1999, 'Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol', Appl. Environ. Microbiol., 65: 1133-1140
Chang, B. V.; K. S. Chen and S. Y. Yuan, 1995, “Dechlorination of 2,4,6-TCP by an anaerobic mixed culture”, Chemosphere, 31: 3803-3811
Chang, B. V.; J. X. Zheng and S. Y. Yuan, 1996, “Effects of alternative electron donors, acceptors and inhibitors on pentachlorophenol dechlorination in soil”, Chemosphere, 33: 313-320
Chang, B. V.; C. W. Chiang and S. Y. Yuan, 1998, “Dechlorination of pentachlorophenol in anaerobic sewage sludge”, Chemosphere, 36: 537-545
Chang, C. C.; S. K. Tseng and S. K. Huang, 1999, 'Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment', Biores. Technol., 69: 53-58
Clément, P.; V. Matus; L. Cárdenas and B. González, 1995, “Degradation of trichlorophenols by Alcaligenes eutrophus JMP134”, FEMS Microbio. Lett., 127: 51-55
Coate, J. D.; R. Chakraborty and M. J. McInerney, 2002, 'Anaerobic benzene biodegradation - a new era', Res. Microbio., 153: 621-628
Cole, J. R.; A. L. Cascarelli; W. W. Mohn and J. M. Tiedje, 1994, “Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol”, Appl. Environ. Microbiol., 60: 3536-3542
Crawford, R. L. and W. W. Mohn, 1985, ”Microbial removal of pentachlorophenol from soil using a Flavobacterium”, Enzyme Microbial Technol., 7:617-620
Dapaah, S.Y. and G. A. Hill, 1992, ”Biodegradation of chlorophenol mixtures by Pseudomonas putida”, Biotechnol. Bioeng., 40:1353-1358
Debus, O., 1995, ”Transport and reaction of aromatics, O2 and CO2 within a membrane bound Biofilm in competition with suspended biomass”, Wat. Sci. Tech., 31:129-141.
Debus, O. and O. Wanner, 1992, ”Degradation of xylene by a biofilm growing on a gas-permeable membrane”, Wat. Sci. Tech., 26: 607-616.
DeWeerd, K. A.; F. Concannon and J. M. Suflita, 1991, 'Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei', Appl. Environ. Microbiol., 57: 1929-1934
Distefano, T. D.; J. M. Gossett and S. H. Zinder, 1992, 'Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture', Appl. Environ. Microbiol., 58: 3622-3629
Droste, R. L.; K. J. Kennedy; J. Lu and M. Lentz, 1998, “ Removal of chlorinated phenols in upflow anaerobic sludge blanket reactors”, Wat. Sci. Tech., 38: 359-367
Eriksson, M.; E. Sodersten; Z. T. Yu; G. Dalhammar and W. W. Mohn, 2003, 'Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils', Appl. Environ. Microbiol., 69: 275-284
Evan, F. L. Editor, 1983, Handbook of environmental data on organic chemicals, 2nd edition, K.V. Van Nostrand Reinhold Co.
Genthner, B. R. S.; W. Allen and P. H. Pritchard, 1989, “ Anaerobic degradation of chloroaromatic compounds in aquatic sediment under a variety of enrichment conditions”, Appl. Environ. Microbiol.,55:1466-1471
Häggblom, M. M. and L. Y. Young, 1990, “Chlorophenol degradation coupled to sulfate reduction”, Appl. Environ. Microbiol., 56: 3255-3260
Häggblom, M. M.; M. D. Rivera and L. Y. Young, 1993, “Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids”, Appl. Environ. Microbiol., 59:1162-1167
Häggblom, M. M.; and L. Y. Young, 1995, “Anaerobic degradation of halogenated phenols by sulfate-reducing consortia”, Appl. Environ. Microbiol., 61: 1546-1550
Häggblom, M.,1998, ”Reductive dechlorination of halogenated phenols by a sulfate-reducing consortium”, FEMS Microbiol. Ecol., 26:35-41
Hanson, J. R.; C. E. Ackerman and K. M. Scow, 1999, 'Biodegradation of methyl tert-butyl ether by a bacterial pure culture', Appl. Environ. Microbiol., 65: 4788-4792
Hatzinger, P. B.; K. McClay; S. Vainberg; M. Tugusheva; C. W. Condee and R. J. Steffan, 2001, 'Biodegradation of methyl tert-butyl ether by a pure bacterial culture', Appl. Environ. Microbiol., 67: 5601-5607
Head, I. M.; J. R. Saunders and R. W. Pickup, 1998, “Microbial evolution, diversity and ecology: A decade of ribosomal RNA analysis of uncultivates microorgamism”, Microbial. Ecol. 35: 1-11
Hendriksen, H. V.; S. Larsen and B. K. Ahring, 1992, “ Influence of a supplemental carbon source on anaerobic fluidized bed dechlorination of pentachlorophenol in granular sludge”, Appl. Environ. Microbiol. , 58:365-370
Hill, G. A.; B. J. Milne and P. A. Bawrocki, 1996, “Cometabolic degradation of 4-chlorophenol by Alcaligenes eutrophus”, Appl. Microbiol. Biotechnol., 46: 163-168
Ho, C. M.; S. K. Tseng and Y. J. Chang, 2001, “Autotrophic denitrofication via a novel membrane-attached biofilm reactor” , Lett. Appl. Microbiol., 33: 201-205
Ho, C. M.; S. K. Tseng and Y. J. Chang, 2002, “Autotrophic denitrification via a biofilm growing on a gas-permeable silicone tube,” J. Chinese Inst. Environ. Eng., 12: 307-313
Holliger, C.; G. Wohlfarth and G. Diekert, 1999, “ Reductive dechlorination in the energy metabolism of anaerobic bacteria”, FEMS Microbiol. Rev. 22:383-398
Karns, J. S.; J. J. Kilbane; S. Duttagupta and A. M. Chakrabarty, 1983,” Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degradating Pseudomonas cepacia”, Appl. Environ. Microbiol. , 46:1176-1181
Kennes, C.; W. M. Wu; L. Bhatnagar and J. G. Zeikus, 1996, ”Anaerobic dechlorination and mineralization of PCP and 2,4,6-TCP by methanogenic PCP-degrading granules”, Appl. Microbiol. Biotechnol.,44:801-806
Kohring, G. W.; X. Zhang and J. Wiegel, 1989, “Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate”, Appl. Environ. Microbiol. , 55: 2735-2737
Krumme, M. L. and S. A. Boyd, 1988, “Reductive dechlorination of chlorinated phenols in anaerobic upflow bioreactors”, Wat. Res. 22: 171-177
Laguerre, G.; M. Allard; F. Revoy and N. Amarger, 1994, 'Rapid identification of Rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes', Appl. Environ. Microbiol., 60:56-63
Lessner, D. J.; R. E. Parales; S. Narayan and D. T. Gibson, 2003, 'Expression of the nitroarene dioxygenase genes in Comamonas sp. strain JS765 and Acidovorax sp. strain JS42 is induced by multiple aromatic compounds', J. Bacteriol., 185: 3895-3904
Lin, B., H. W. Van Verseveld and W. F. M. Roling, 2002, 'Microbial aspects of anaerobic BTEX degradation', Biomed. and Environ. Sci., 15: 130-144
Livingston, A. G., 1993, “A novel membrane bioreactor for detoxifying industrial wastewater (I): Biodegradation of phenol in a synthetically concocted wastewater” Biotechnol. Bioeng. 41: 927-936
Madsen, T. and J. Amand, 1991, “Effect of sulfuroxy anions on degradation of pentachlorophenols by a methanogenic enrichment culture”, Appl. Environ. Microbiol.,57:2453-2458
Madsen, T. and D. Licht, 1992, 'Isolation and characterization of an anaerobic chlorophenol-transforming bacterium', Appl. Environ. Microbiol., 58: 2874-2878
Männistö, M. K.; M. A. Tiirola; M. S. Salkinoja-Salonen; M. S. Kulomaa and J. A. Puhakka, 1999, 'Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater', Arch. Microbiol., 171: 189-197
McCleaf, P. R. and E. D. Schroeder, 1995, “Denitrification using a membrane- immobilized biofilm”, J. AWWA. 87: 77-86
Mechichi, T.; M. Labat; J. L. Garcia; P. Thomas and B. K. C. Patel, 1999, 'Sporobacterium olearium gen, nov., sp, nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester', Inter. Jour. Sys. Bacterio., 49: 1741-1748
Melin E. S.; J. F. Ferguson and J. A. Puhakka, 1997, “Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture”, Appl. Microbiol. Biotechnol., 47: 675-682
Mohamed, M. E. S.; W. Ismail; J. Heider and G. Fuchs, 2002, 'Aerobic metabolism of phenylacetic acids in Azoarcus evansii', Arch. Microbiol., 178: 180-192
Mohn, W. W. and K. J. Kennedy, 1992, ”Reductive dehalogenation of chlorophenols by Desulfomonile Tiedjei DCB-1”, Appl. Environ. Microbiol., 58:1367-1370
Moormann, H.; P. Kuschk and U. Stottmeister, 2002, 'The effect of rhizodeposition from helophytes on bacterial degradation of phenolic compounds', Acta Biotechnol., 22: 107-112
Muyzer, G.; E. C. DeWaal and A. G. Uitterlinden, 1993, ”Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA”, Appl. Environ. Microbiol.,59: 695-700
Nohynek, L. J.; E. L. Nurmiaho-Lassila; E. L. Suhonen; H. J. Busse; M. Mohammadi; J. Hantula; F. Rainey and M. S. Salkinoja-Salonen, 1996, 'Description of chlorophenol-degrading Pseudomonas sp. strains KF1, KF3 and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov.', Inter. Jour. Sys. Bacterio., 46: 1042-1055
Peter, V.; P. H. Janssen and R. Conrad, 1999, 'Transient production of formate during chemolithotrophic growth of anaerobic microorganism on hydrogen', Curr. Microbiol., 38: 285-289
Puhakka, J. A., W. K. Shieh; K. Järvinen and E. Melin, 1992, “Chlorophenol degradation under oxic and anoxic conditions”, Wat. Sci. Tech., 25: 147-152
Quan, X.; H. Shi; Y. Zhang; J. Wang and Y. Qian, 2003, “Biodegradation of 2,4-dichlorophenol in an air-lift honeycomb-like ceramic reactor”, Pro. Biochem., 38: 1545-1551
Quan, X.; H. Shi; Y. Zhang; J. Wang and Y. Qian, 2004, “Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp”, Separa. Puri. Technol., 34: 97-103
Reinecke, W. and H. J. Knackmuss, 1988, “Microbial degradation of haloaromatics “, Ann. Rev. Microbiol., 42:263-287
Schenzle, A.; H. Lenke; P. Fischer; P. A. Wiliams and H. J. Knackmuss, 1997, “Catabolism of 3-nitrophenol by Ralstonia eutrophus JMP 134”, Appl. Environ. Microbiol., 63: 1421-1427
Schenzle, A.; H. Lenke; J. C. Spain and H. J. Knackmuss, 1999, “Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutrophus JMP 134”, Appl. Environ. Microbiol., 65: 2317-2323
Schmidt, E.; M. Hellwing and H. J. Knackmuss, 1983, ”Degradation of chlorophenols by a defined mixed microbial community”, Appl. Environ. Microbiol., 46:1038-1044
Song, B.; L. J. Kerkhof and M. M. Häggblom, 2001, 'Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions', FEMS Microbiol. Ecol., 33: 183-188
Steiert, J. G. and R. L. Crawford, 1985, ”Microbial degradation of chlorinated phenols”, Trends in Biotechnol., 3:300-305
Suflita, J. M.; A. Horwitz; D. R. Shelton and J. M. Tiedje, 1982, ”Dechlorination: A novel pathway for the anaerobic biodegradation of haloaromatic compounds”, Science, 218: 1115-1116
Suflita, J. M. and G. D. Miller, 1985, “Microbial metabolism of chlorophenolic compounds in groundwater aquifers”, Environ. Sci. Technol., 4:751-758
Suflita, J. M. and S. A. Gibson, 1986, “Extropolation of biodegradation result to groundwater aquifers: reductive dehalogenation of aromatic compounds”, Appl. Environ. Microbiol., 52:681-688
Sun, B.; J. R. Cole; R. A. Sanford and J. M. Tiedje, 2000, 'Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol', Appl. Environ. Microbiol., 66: 2408-2413
Takeuchi, R.; Y. Suwa; T. Yamagishi and Y. Yonezawa, 2000, ”Anaerobic transformation of chlorophenols in methanogenic sludge unexposed to chlorophenols”, Chemosphere, 41:1457-1462
Terzenbach, D. P. and M. Blaut, 1994, 'Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria', FEMS Microbiol. Lett., 123:213-218
Ulrich, A. C. and E. A. Edwards, 2003, 'Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures', Environ. Microbiol., 5: 92-102
Valenzuela, J.; U. Bumann; R. Cespedes; L. Padilla and B. Gonzalez, 1997, “Degradation of chlorophenols by Alcaligenes eutrophus JMP134(pJP4) in bleached kraft mill effluent”, Appl. Environ. Microbiol.,63: 227-232
Vikas, U. and K. B. Sanjoy, 1997, ”Effects of chlorophenols and nitrophenols on the kinetics of propionate degradation in sulfate-reducing anaerobic systems”, Environ. Sci. Technol., 31:1607-1614
Vogel, T. M. and L. Nies, 1990, “Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sedments”, Appl. Environ. Microbiol., 56:2612-2617
Wiegel, J.; G.W. Kohring and J.E. Poger, 1989, “Anaerobic biodegradation of 2,4-DCP in freshwater lake sediment at different temperature”, Appl. Environ. Microbiol.,55:1348-1353
Zhang, H. S.; M. A. Bruns and B. E. Logan, 2002, 'Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium', Environ. Microbiol., 4: 570-576
Zhao, J. S. and O. P. Ward, 1999, 'Microbial degradation of nitrobenzene and mono-nitrophenol by bacteria enriched from municipal activated sludge', Candian Journal of Microbiology, 45: 427-432
盧中榮 (1995) 不同碳源及結合性氧化物對氯酚脫氯之影響, 國立台灣大學環境工程研究所碩士論文.
張育傑 (1999) 利用新式薄膜反應槽去除廢水中氮之研究, 國立台灣大學環境工程研究所博士論文.
何俊明 (2004) 利用自營性薄膜生物反應槽進行除氮之研究, 國立台灣大學環境工程研究所博士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39019-
dc.description.abstract氯酚化合物是常見的工業污染物,其污染型態常以水、空氣、土壤及地下水等方式存在於環境中,而在氯酚污染之處理技術中,生物處理方法是較為普遍而經濟的方法,其中又以厭氧生物方法為主流,主要是因為在厭氧環境下,氯酚可被微生物以還原脫氯途徑分解,在此途徑下,氯酚依序被脫氯產生單氯酚,然後再脫氯變成酚而破環分解,由於此代謝途徑會使氯酚之毒性持續降低,因此也較普遍被學者廣泛的研究。本研究利用供氫之薄膜生物反應槽進行氯酚脫氯反應之研究,利用氫氣當成電子供給者,而以氯酚為電子接受者進行還原脫氯反應,此反應途徑不需外加有機物質,因此可避免二次污染的問題。實驗結果顯示在2-CP三個月的馴養期間,已馴養出脫氯氫細菌,可利用氫氣為電子供給者進行2-CP之還原脫氯反應,中間產物為酚,而酚仍可被微生物繼續分解。反應槽在2-CP進流濃度為24.8 mg/L,以及HRT 15小時條件下 (負荷率0.72 g/m2 d),2-CP之去除率為94 %,而TOC去除率為60 %。2-CP脫氯反應之最佳pH範圍為5.8 ~ 7.2之間,當pH≦5或≧8時,2-CP的去除率則大幅的下降至50 %以下。環境中的硝酸鹽及硫酸鹽均會取代2-CP之電子接受者的角色,因而對脫氯反應產生抑制作用,不過這兩者的抑制機制有些許的差異,主要差異在於硝酸鹽會立即取代2-CP之電子接受者的角色,而硫酸鹽則需經過ㄧ段時間才會完全抑制脫氯反應,其主要的原因可能是本系統之脫氯菌大部分也具有脫硝能力。本系統對於不同氯酚也都具有脫氯能力,其脫氯速率依序為2-CP > 2,4-DCP > 4-CP > 3-CP, 3,4-DCP > 2,4,5-TCP > 2,5-DCP,多氯酚之脫氯反應會依鄰位(ortho)、間位(meta)、對位(para)之順序將氯基脫去。由2-CP馴養反應槽之菌相鑑定與親缘分析結果顯示,大部分菌種屬於Proteobacteria/ β-proteobacteria,其中又以Ralstonia sp. 50為最主要菌種,此菌種可適應不同環境條件,並以不同的代謝途徑來分解各種氯酚。zh_TW
dc.description.abstractChlorophenols (CPs) are widely known as industrial pollutants. These chemicals have been recognized as organic pollutants of water, air, soil and groundwater. Commonly, biological methods are used for the remediation of these pollutants, especially the anaerobic biotechnology. By the anaerobic pathway, chlorine substituents are replaced by hydrogen and produces less-chlorinated compounds. This process is widely studied because less chlorinated CPs represent less toxic to the environment. This study utilized hydrogenotrophic membrane bioreactors to cultivate hydrogen bacteria for dechlorinating the CPs. The H2 was used as the electron donor and the CPs were used as the electron acceptors, thus the dechlorination was proceeded. This process needed not the external organics, so it could prevent the secondary pollution. Experimental results showed that the 2-CP dechlorinating bacteria were cultivated after three months acclimation. The 2-CP was dechlorinated to produce phenol, and the phenol could also be degraded. Under the condition of influent 2-CP 24.8 mg/L and HRT of 15 h (loading rate = 0.72 g/m2 d), the 2-CP and TOC removal efficiency was 94% and 60%, respectively. The suitable pH range was 5.8 ~ 7.2. When the pH value was below 5, or higher than 8, the 2-CP removal efficiency will drop to below 50%. Nitrate and sulfate could take the place of 2-CP as the electron acceptor, and thus inhibited the 2-CP dechlorination. However, their inhibition mechanisms were a little different. Nitrate will take the place of 2-CP immediately, while the sulfate take a period of time to reach completely inhibition. The reason might be because the dechlorinating bacteria also possess the denitrification ability. This system could also dechlorinate the other CPs, and their dechlorinating rate were 2-CP > 2,4-DCP > 4-CP > 3-CP, 3,4-DCP > 2,4,5-TCP > 2,5-DCP. The CPs will be dechlorinated by remove the ortho, meta and para chlorine substutes in sequence. From the microbial identification and phylogenetic analysis of the 2-CP bioreactors, the most dominant bacteria belonged to Proteobacteria/ β-proteobacteria. In which, the Ralstonia sp. 50 was the most dominant species and could adapt to different environmental conditions and degrade the CPs by different metabolic pathways.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:57:45Z (GMT). No. of bitstreams: 1
ntu-94-D85541001-1.pdf: 2274203 bytes, checksum: 8a8a825ef5b979ef063cd95fceda4e0a (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目 錄
第一章 緒論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1-1 研究緣起∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1-2 研究目的∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2
1-3 研究內容∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2
第二章 文獻回顧∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5
2-1氯酚化合物之特性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5
2-1-1氯酚化合物之物理化學性質及其污染來源∙∙∙∙∙∙∙5
2-1-2氯酚化合物之生物毒性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5
2-2 氯酚化合物之生物分解途徑∙∙∙∙∙∙∙∙∙∙∙∙∙∙6
2-2-1氯酚化合物之好氧代謝途徑∙∙∙∙∙∙∙∙∙∙∙∙∙6
2-2-2氯酚之厭氧生物代謝途徑∙∙∙∙∙∙∙∙∙∙∙∙∙∙7
2-3影響微生物對氯酚脫氯反應之因子∙∙∙∙∙∙∙∙∙∙∙8
2-3-1 pH之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8
2-3-2 溫度之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8
2-3-3 電子供應者之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9
2-3-4 電子接受者之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10
2-4 氯酚於不同還原條件下之生物降解∙∙∙∙∙∙∙∙∙∙∙10
2-5厭氧脫氯菌之特性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11
2-6薄膜生物反應槽之種類∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13
2-7 分子生物技術應用於環境樣品中之菌群分析∙∙∙∙∙∙∙16
2-7-1 基因轉植之菌種鑑定方法∙∙∙∙∙∙∙∙∙∙∙∙∙17
2-7-2 變性梯度明膠電泳∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18
2-7-3 限制酵素斷片法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18
2-7-4 螢光原位雜交法(Fluorescent in situ hybridization, FISH) 20
第三章 供氫之薄膜生物反應槽對2-CP之脫氯反應及其環境影響因子∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20
3-1 前言∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21
3-2 材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21
3-2-1 薄膜生物反應槽∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22
3-2-2 反應槽馴養∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22
3-2-3 批次實驗∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22
3-2-4 分析方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24
3-3 結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24
3-3-1 反應槽之馴養∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙25
3-3-2 2-CP 脫氯反應試驗∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28
3-3-3 pH對2-CP脫氯反應之影響∙∙∙∙∙∙∙∙∙∙∙∙∙30
3-3-4 硝酸鹽及硫酸鹽對2-CP脫氯反應之影響∙∙∙∙∙∙∙∙47
3-3-5 氫氣在2-CP降解中的角色∙∙∙∙∙∙∙∙∙∙∙∙∙∙49
3-3-6反應槽之操作條件控制∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙55
3-3-7 小結∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙55
第四章 供氫之薄膜生物反應槽對不同氯酚之脫氯能力試驗∙∙57
4-1 前言∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙57
4-2 材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙58
4-2-1 材料∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙58
4-2-2 分析方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙58
4-3 結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙58
4-3-1 不同單氯酚之生物降解∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙58
4-3-2 二氯酚之降解∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙64
4-3-3 三氯酚之生物降解∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙71
4-3-4 反應槽對不同氯酚之降解效率∙∙∙∙∙∙∙∙∙∙∙∙74
4-3-5 小結∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙80
第五章 氯酚降解反應槽之菌相鑑定∙∙∙∙∙∙∙∙∙∙∙∙81
5-1 前言∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙81
5-2 材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙82
5-2-1 DNA純化步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙82
5-2-2 PCR反應步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙83
5-2-3 基因轉植技術∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙84
5-2-4 菌種親緣樹之建立∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙86
5-2-5變性梯度明膠電泳法(DGGE)∙∙∙∙∙∙∙∙∙∙∙∙86
5-3 結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙91
5-3-1 反應槽之菌種鑑定及其特性分析∙∙∙∙∙∙∙∙∙∙∙91
5-3-2 反應槽菌相之親缘分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙97
5-3-3 反應槽於不同環境條件下之菌相變化∙∙∙∙∙∙∙∙∙103
5-3-4 小結∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙111
第六章 結論與建議∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙113
6-1 結論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙113
6-2 建議∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙114
參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙115
dc.language.isozh-TW
dc.title利用供氫之薄膜生物反應槽進行氯酚還原脫氯之研究zh_TW
dc.titleReductive dechlorination of chlorophenols by hydrogenotrophic membrane bioreactorsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee於幼華,吳先琪,黃汝賢,盧至人,林明瑞
dc.subject.keyword還原脫氯,生物膜,氯酚,zh_TW
dc.subject.keywordbiofilm,chlorophenol,reductive dechlorination,en
dc.relation.page124
dc.rights.note有償授權
dc.date.accepted2005-05-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved