請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39015完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林肇堂(Jaw-Town Lin),郭明良(Min-Liang Kuo) | |
| dc.contributor.author | Shih-Pei Huang | en |
| dc.contributor.author | 黃世貝 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:57:32Z | - |
| dc.date.available | 2005-07-11 | |
| dc.date.copyright | 2005-07-11 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-05-09 | |
| dc.identifier.citation | 1. Fuchs, C. S. and Mayer, R. J. Gastric carcinoma. N Engl J Med, 333: 32-41, 1995.
2. Laur'En, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol Microbiol Scand, 64: 31-49, 1965. 3. An international association between Helicobacter pylori infection and gastric cancer. The EUROGAST Study Group. Lancet, 341: 1359-1362, 1993. 4. Nomura, A., Stemmermann, G. N., Chyou, P. H., Kato, I., Perez-Perez, G. I., and Blaser, M. J. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med, 325: 1132-1136, 1991. 5. Tatsuta, M., Iishi, H., Okuda, S., Taniguchi, H., and Yokota, Y. The association of Helicobacter pylori with differentiated-type early gastric cancer. Cancer, 72: 1841-1845, 1993. 6. Hanahan, D. and Weinberg, R. A. The hallmarks of cancer. Cell, 100: 57-70, 2000. 7. Coussens, L. M. and Werb, Z. Inflammation and cancer. Nature, 420: 860-867, 2002. 8. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 4: 11-22, 2004. 9. Carmeliet, P. and Jain, R. K. Angiogenesis in cancer and other diseases. Nature, 407: 249-257, 2000. 10. Hlatky, L., Hahnfeldt, P., and Folkman, J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst, 94: 883-893, 2002. 11. Brem, S., Cotran, R., and Folkman, J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst, 48: 347-356, 1972. 12. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med, 324: 1-8, 1991. 13. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1: 27-31, 1995. 14. Folkman, J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med, 333: 1757-1763, 1995. 15. Holmgren, L., O'Reilly, M. S., and Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med, 1: 149-153, 1995. 16. Dameron, K. M., Volpert, O. V., Tainsky, M. A., and Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 265: 1582-1584, 1994. 17. Pepper, M. S., Ferrara, N., Orci, L., and Montesano, R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun, 189: 824-831, 1992. 18. Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 285: 1182-1186, 1971. 19. Jaffe, E. A. Cell biology of endothelial cells. Hum Pathol, 18: 234-239, 1987. 20. Denekamp, J. Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol, 66: 181-196, 1993. 21. Brooks, P. C., Clark, R. A., and Cheresh, D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 264: 569-571, 1994. 22. O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79: 315-328, 1994. 23. Desai, S. B. and Libutti, S. K. Tumor angiogenesis and endothelial cell modulatory factors. J Immunother, 22: 186-211, 1999. 24. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer, 2: 795-803, 2002. 25. Folkman, J., Merler, E., Abernathy, C., and Williams, G. Isolation of a tumor factor responsible or angiogenesis. J Exp Med, 133: 275-288, 1971. 26. Klagsbrun, M., Knighton, D., and Folkman, J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res, 36: 110-114, 1976. 27. Folkman, J. and Klagsbrun, M. Angiogenic factors. Science, 235: 442-447, 1987. 28. Tonini, T., Rossi, F., and Claudio, P. P. Molecular basis of angiogenesis and cancer. Oncogene, 22: 6549-6556, 2003. 29. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., and Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246: 1306-1309, 1989. 30. Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D. T. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science, 246: 1309-1312, 1989. 31. Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F., and Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol, 237: 97-132, 1999. 32. Ferrara, N. Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol, 237: 1-30, 1999. 33. Minchenko, A., Bauer, T., Salceda, S., and Caro, J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest, 71: 374-379, 1994. 34. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., and Semenza, G. L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 16: 4604-4613, 1996. 35. Ikeda, E., Achen, M. G., Breier, G., and Risau, W. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem, 270: 19761-19766, 1995. 36. Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J, 13: 9-22, 1999. 37. Eriksson, U. and Alitalo, K. Structure, expression and receptor-binding properties of novel vascular endothelial growth factors. Curr Top Microbiol Immunol, 237: 41-57, 1999. 38. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., and Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 92: 735-745, 1998. 39. Landgren, E., Schiller, P., Cao, Y., and Claesson-Welsh, L. Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene, 16: 359-367, 1998. 40. Kim, I., Kim, H. G., So, J. N., Kim, J. H., Kwak, H. J., and Koh, G. Y. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-Kinase/Akt signal transduction pathway. Circ Res, 86: 24-29, 2000. 41. Maeda, K., Chung, Y. S., Takatsuka, S., Ogawa, Y., Onoda, N., Sawada, T., Kato, Y., Nitta, A., Arimoto, Y., and Kondo, Y. Tumour angiogenesis and tumour cell proliferation as prognostic indicators in gastric carcinoma. Br J Cancer, 72: 319-323, 1995. 42. Maeda, K., Chung, Y. S., Takatsuka, S., Ogawa, Y., Sawada, T., Yamashita, Y., Onoda, N., Kato, Y., Nitta, A., and Arimoto, Y. Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol, 13: 477-481, 1995. 43. Tanigawa, N., Amaya, H., Matsumura, M., and Shimomatsuya, T. Association of tumour vasculature with tumour progression and overall survival of patients with non-early gastric carcinomas. Br J Cancer, 75: 566-571, 1997. 44. Xiangming, C., Hokita, S., Natsugoe, S., Tanabe, G., Baba, M., Takao, S., Kuroshima, K., and Aikou, T. Angiogenesis as an unfavorable factor related to lymph node metastasis in early gastric cancer. Ann Surg Oncol, 5: 585-589, 1998. 45. Tanigawa, N., Amaya, H., Matsumura, M., and Shimomatsuya, T. Correlation between expression of vascular endothelial growth factor and tumor vascularity, and patient outcome in human gastric carcinoma. J Clin Oncol, 15: 826-832, 1997. 46. Saito, H., Tsujitani, S., Kondo, A., Ikeguchi, M., Maeta, M., and Kaibara, N. Expression of vascular endothelial growth factor correlates with hematogenous recurrence in gastric carcinoma. Surgery, 125: 195-201, 1999. 47. Maeda, K., Chung, Y. S., Ogawa, Y., Takatsuka, S., Kang, S. M., Ogawa, M., Sawada, T., and Sowa, M. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer, 77: 858-863, 1996. 48. Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F., and Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J, 334 ( Pt 2): 297-314, 1998. 49. Wu, C. W., Wang, S. R., Chao, M. F., Wu, T. C., Lui, W. Y., P'Eng F, K., and Chi, C. W. Serum interleukin-6 levels reflect disease status of gastric cancer. Am J Gastroenterol, 91: 1417-1422, 1996. 50. Yamaoka, Y., Kodama, T., Kita, M., Imanishi, J., Kashima, K., and Graham, D. Y. Relation between cytokines and Helicobacter pylori in gastric cancer. Helicobacter, 6: 116-124, 2001. 51. Matsuo, K., Oka, M., Murase, K., Soda, H., Isomoto, H., Takeshima, F., Mizuta, Y., Murata, I., and Kohno, S. Expression of interleukin 6 and its receptor in human gastric and colorectal cancers. J Int Med Res, 31: 69-75, 2003. 52. Ito, R., Yasui, W., Kuniyasu, H., Yokozaki, H., and Tahara, E. Expression of interleukin-6 and its effect on the cell growth of gastric carcinoma cell lines. Jpn J Cancer Res, 88: 953-958, 1997. 53. Ilhan, N., Ilhan, Y., Akbulut, H., and Kucuksu, M. C-reactive protein, procalcitonin, interleukin-6, vascular endothelial growth factor and oxidative metabolites in diagnosis of infection and staging in patients with gastric cancer. World J Gastroenterol, 10: 1115-1120, 2004. 54. Dankbar, B., Padro, T., Leo, R., Feldmann, B., Kropff, M., Mesters, R. M., Serve, H., Berdel, W. E., and Kienast, J. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood, 95: 2630-2636, 2000. 55. Wei, L. H., Kuo, M. L., Chen, C. A., Cheng, W. F., Cheng, S. P., Hsieh, F. J., and Hsieh, C. Y. Interleukin-6 in cervical cancer: the relationship with vascular endothelial growth factor. Gynecol Oncol, 82: 49-56, 2001. 56. Hatzi, E., Murphy, C., Zoephel, A., Rasmussen, H., Morbidelli, L., Ahorn, H., Kunisada, K., Tontsch, U., Klenk, M., Yamauchi-Takihara, K., Ziche, M., Rofstad, E. K., Schweigerer, L., and Fotsis, T. N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth. Oncogene, 21: 3552-3561, 2002. 57. Janne, P. A. and Mayer, R. J. Chemoprevention of colorectal cancer. N Engl J Med, 342: 1960-1968, 2000. 58. FitzGerald, G. A. and Patrono, C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med, 345: 433-442, 2001. 59. Dannenberg, A. J., Altorki, N. K., Boyle, J. O., Dang, C., Howe, L. R., Weksler, B. B., and Subbaramaiah, K. Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol, 2: 544-551, 2001. 60. Saukkonen, K., Rintahaka, J., Sivula, A., Buskens, C. J., Van Rees, B. P., Rio, M. C., Haglund, C., Van Lanschot, J. J., Offerhaus, G. J., and Ristimaki, A. Cyclooxygenase-2 and gastric carcinogenesis. Apmis, 111: 915-925, 2003. 61. Hu, P. J., Yu, J., Zeng, Z. R., Leung, W. K., Lin, H. L., Tang, B. D., Bai, A. H., and Sung, J. J. Chemoprevention of gastric cancer by celecoxib in rats. Gut, 53: 195-200, 2004. 62. Iniguez, M. A., Rodriguez, A., Volpert, O. V., Fresno, M., and Redondo, J. M. Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends Mol Med, 9: 73-78, 2003. 63. Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., Keshert, E., and Keshet, E. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394: 485-490, 1998. 64. Giaccia, A., Siim, B. G., and Johnson, R. S. HIF-1 as a target for drug development. Nat Rev Drug Discov, 2: 803-811, 2003. 65. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 3: 721-732, 2003. 66. Lee, J. W., Bae, S. H., Jeong, J. W., Kim, S. H., and Kim, K. W. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med, 36: 1-12, 2004. 67. Kajitani, T. The general rules for the gastric cancer study in surgery and pathology. Part I. Clinical classification. Jpn J Surg, 11: 127-139, 1981. 68. Lauren, D. R., Jensen, D. J., Douglas, J. A., and Follett, J. M. Efficient method for determining the glycyrrhizin content of fresh and dried roots, and root extracts, of Glycyrrhiza species. Phytochem Anal, 12: 332-335, 2001. 69. Hobisch, A., Rogatsch, H., Hittmair, A., Fuchs, D., Bartsch, G., Jr., Klocker, H., Bartsch, G., and Culig, Z. Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. J Pathol, 191: 239-244, 2000. 70. Huang, S. P., Wu, M. S., Shun, C. T., Wang, H. P., and Lin, J. T. Tumor angiogenesis increases with nuclear p53 accumulation in gastric carcinoma. Hepatogastroenterology, 49: 1453-1456, 2002. 71. Fackler, M. J., Civin, C. I., Sutherland, D. R., Baker, M. A., and May, W. S. Activated protein kinase C directly phosphorylates the CD34 antigen on hematopoietic cells. J Biol Chem, 265: 11056-11061, 1990. 72. Li, L., Yang, G., Ebara, S., Satoh, T., Nasu, Y., Timme, T. L., Ren, C., Wang, J., Tahir, S. A., and Thompson, T. C. Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res, 61: 4386-4392, 2001. 73. Maity, A., Pore, N., Lee, J., Solomon, D., and O'Rourke, D. M. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3'-kinase and distinct from that induced by hypoxia. Cancer Res, 60: 5879-5886, 2000. 74. Kubota, Y., Kleinman, H. K., Martin, G. R., and Lawley, T. J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol, 107: 1589-1598, 1988. 75. Juarez, J. C., Guan, X., Shipulina, N. V., Plunkett, M. L., Parry, G. C., Shaw, D. E., Zhang, J. C., Rabbani, S. A., McCrae, K. R., Mazar, A. P., Morgan, W. T., and Donate, F. Histidine-proline-rich glycoprotein has potent antiangiogenic activity mediated through the histidine-proline-rich domain. Cancer Res, 62: 5344-5350, 2002. 76. Passaniti, A., Taylor, R. M., Pili, R., Guo, Y., Long, P. V., Haney, J. A., Pauly, R. R., Grant, D. S., and Martin, G. R. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest, 67: 519-528, 1992. 77. Chun, Y. S., Kim, M. S., and Park, J. W. Oxygen-dependent and -independent regulation of HIF-1alpha. J Korean Med Sci, 17: 581-588, 2002. 78. Yamaguchi, R., Yano, H., Iemura, A., Ogasawara, S., Haramaki, M., and Kojiro, M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology, 28: 68-77, 1998. 79. Comerford, K. M., Wallace, T. J., Karhausen, J., Louis, N. A., Montalto, M. C., and Colgan, S. P. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 62: 3387-3394, 2002. 80. Caniggia, I., Mostachfi, H., Winter, J., Gassmann, M., Lye, S. J., Kuliszewski, M., and Post, M. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest, 105: 577-587, 2000. 81. Crabtree, J. E., Shallcross, T. M., Heatley, R. V., and Wyatt, J. I. Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori associated gastritis. Gut, 32: 1473-1477, 1991. 82. Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N., and Schlemper, R. J. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 345: 784-789, 2001. 83. Yamaoka, Y., Kita, M., Kodama, T., Sawai, N., and Imanishi, J. Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa. Gastroenterology, 110: 1744-1752, 1996. 84. Tanahashi, T., Kita, M., Kodama, T., Yamaoka, Y., Sawai, N., Ohno, T., Mitsufuji, S., Wei, Y. P., Kashima, K., and Imanishi, J. Cytokine expression and production by purified Helicobacter pylori urease in human gastric epithelial cells. Infect Immun, 68: 664-671, 2000. 85. Judd, L. M., Alderman, B. M., Howlett, M., Shulkes, A., Dow, C., Moverley, J., Grail, D., Jenkins, B. J., Ernst, M., and Giraud, A. S. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology, 126: 196-207, 2004. 86. Huang, S. P., Wu, M. S., Wang, H. P., Yang, C. S., Kuo, M. L., and Lin, J. T. Correlation between serum levels of interleukin-6 and vascular endothelial growth factor in gastric carcinoma. J Gastroenterol Hepatol, 17: 1165-1169, 2002. 87. Stadtl]ander, C. T. and Waterbor, J. W. Molecular epidemiology, pathogenesis and prevention of gastric cancer. Carcinogenesis, 20: 2195-2208, 1999. 88. Kishimoto, T., Akira, S., Narazaki, M., and Taga, T. Interleukin-6 family of cytokines and gp130. Blood, 86: 1243-1254, 1995. 89. Ueda, T., Bruchovsky, N., and Sadar, M. D. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem, 277: 7076-7085, 2002. 90. Chen, R. H., Chang, M. C., Su, Y. H., Tsai, Y. T., and Kuo, M. L. Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J Biol Chem, 274: 23013-23019, 1999. 91. Funamoto, M., Fujio, Y., Kunisada, K., Negoro, S., Tone, E., Osugi, T., Hirota, H., Izumi, M., Yoshizaki, K., Walsh, K., Kishimoto, T., and Yamauchi-Takihara, K. Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes. J Biol Chem, 275: 10561-10566, 2000. 92. Xu, L., Fukumura, D., and Jain, R. K. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J Biol Chem, 277: 11368-11374, 2002. 93. Gao, N., Ding, M., Zheng, J. Z., Zhang, Z., Leonard, S. S., Liu, K. J., Shi, X., and Jiang, B. H. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J Biol Chem, 277: 31963-31971, 2002. 94. Fukuda, R., Hirota, K., Fan, F., Jung, Y. D., Ellis, L. M., and Semenza, G. L. Insulin-like Growth Factor 1 Induces Hypoxia-inducible Factor 1-mediated Vascular Endothelial Growth Factor Expression, Which is Dependent on MAP Kinase and Phosphatidylinositol 3-Kinase Signaling in Colon Cancer Cells. J Biol Chem, 277: 38205-38211, 2002. 95. LeCouter, J., Kowalski, J., Foster, J., Hass, P., Zhang, Z., Dillard-Telm, L., Frantz, G., Rangell, L., DeGuzman, L., Keller, G. A., Peale, F., Gurney, A., Hillan, K. J., and Ferrara, N. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature, 412: 877-884, 2001. 96. Kim, Y. M., Lee, Y. M., Kim, H. S., Kim, J. D., Choi, Y., Kim, K. W., Lee, S. Y., and Kwon, Y. G. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem, 277: 6799-6805, 2002. 97. Zhang, J., Ramesh, N., Chen, Y., Li, Y., Dilley, J., Working, P., and Yu, D. C. Identification of human uroplakin II promoter and its use in the construction of CG8840, a urothelium-specific adenovirus variant that eliminates established bladder tumors in combination with docetaxel. Cancer Res, 62: 3743-3750, 2002. 98. Shih, S. C., Ju, M., Liu, N., Mo, J. R., Ney, J. J., and Smith, L. E. Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Proc Natl Acad Sci U S A, 100: 15859-15864, 2003. 99. Salven, P., Hattori, K., Heissig, B., and Rafii, S. Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. Faseb J, 16: 1471-1473, 2002. 100. Jung, Y. D., Liu, W., Reinmuth, N., Ahmad, S. A., Fan, F., Gallick, G. E., and Ellis, L. M. Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis, 4: 155-162, 2001. 101. Kohno, T., Mizukami, H., Suzuki, M., Saga, Y., Takei, Y., Shimpo, M., Matsushita, T., Okada, T., Hanazono, Y., Kume, A., Sato, I., and Ozawa, K. Interleukin-10-mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer Res, 63: 5091-5094, 2003. 102. Wei, L. H., Kuo, M. L., Chen, C. A., Chou, C. H., Lai, K. B., Lee, C. N., and Hsieh, C. Y. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene, 22: 1517-1527, 2003. 103. Lin, M. T., Juan, C. Y., Chang, K. J., Chen, W. J., and Kuo, M. L. IL-6 inhibits apoptosis and retains oxidative DNA lesions in human gastric cancer AGS cells through up-regulation of anti-apoptotic gene mcl-1. Carcinogenesis, 22: 1947-1953, 2001. 104. Leung, W. K., To, K. F., Go, M. Y., Chan, K. K., Chan, F. K., Ng, E. K., Chung, S. C., and Sung, J. J. Cyclooxygenase-2 upregulates vascular endothelial growth factor expression and angiogenesis in human gastric carcinoma. Int J Oncol, 23: 1317-1322, 2003. 105. Joo, Y. E., Rew, J. S., Seo, Y. H., Choi, S. K., Kim, Y. J., Park, C. S., and Kim, S. J. Cyclooxygenase-2 overexpression correlates with vascular endothelial growth factor expression and tumor angiogenesis in gastric cancer. J Clin Gastroenterol, 37: 28-33, 2003. 106. Yu, H. G., Li, J. Y., Yang, Y. N., Luo, H. S., Yu, J. P., Meier, J. J., Schrader, H., Bastian, A., Schmidt, W. E., and Schmitz, F. Increased abundance of cyclooxygenase-2 correlates with vascular endothelial growth factor-A abundance and tumor angiogenesis in gastric cancer. Cancer Lett, 195: 43-51, 2003. 107. Li, H. X., Chang, X. M., Song, Z. J., and He, S. X. Correlation between expression of cyclooxygenase-2 and angiogenesis in human gastric adenocarcinoma. World J Gastroenterol, 9: 674-677, 2003. 108. Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R., and Ellis, L. M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res, 55: 3964-3968, 1995. 109. Linderholm, B., Grankvist, K., Wilking, N., Johansson, M., Tavelin, B., and Henriksson, R. Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol, 18: 1423-1431, 2000. 110. Suzuki, K., Hayashi, N., Miyamoto, Y., Yamamoto, M., Ohkawa, K., Ito, Y., Sasaki, Y., Yamaguchi, Y., Nakase, H., Noda, K., Enomoto, N., Arai, K., Yamada, Y., Yoshihara, H., Tujimura, T., Kawano, K., Yoshikawa, K., and Kamada, T. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma. Cancer Res, 56: 3004-3009, 1996. 111. Yuan, A., Yu, C. J., Luh, K. T., Kuo, S. H., Lee, Y. C., and Yang, P. C. Aberrant p53 expression correlates with expression of vascular endothelial growth factor mRNA and interleukin-8 mRNA and neoangiogenesis in non-small-cell lung cancer. J Clin Oncol, 20: 900-910, 2002. 112. Smith, B. D., Smith, G. L., Carter, D., Sasaki, C. T., and Haffty, B. G. Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma. J Clin Oncol, 18: 2046-2052, 2000. 113. Guidi, A. J., Abu-Jawdeh, G., Berse, B., Jackman, R. W., Tognazzi, K., Dvorak, H. F., and Brown, L. F. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst, 87: 1237-1245, 1995. 114. Mesiano, S., Ferrara, N., and Jaffe, R. B. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol, 153: 1249-1256, 1998. 115. Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Dvorak, H. F., and Senger, D. R. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol, 143: 1255-1262, 1993. 116. Tsuzuki, Y., Fukumura, D., Oosthuyse, B., Koike, C., Carmeliet, P., and Jain, R. K. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res, 60: 6248-6252, 2000. 117. Renner, U., Lohrer, P., Schaaf, L., Feirer, M., Schmitt, K., Onofri, C., Arzt, E., and Stalla, G. K. Transforming Growth Factor-beta Stimulates Vascular Endothelial Growth Factor Production by Folliculostellate Pituitary Cells. Endocrinology, 143: 3759-3765, 2002. 118. Warren, R. S., Yuan, H., Matli, M. R., Ferrara, N., and Donner, D. B. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem, 271: 29483-29488, 1996. 119. Goldman, C. K., Kim, J., Wong, W. L., King, V., Brock, T., and Gillespie, G. Y. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell, 4: 121-133, 1993. 120. Subbaramaiah, K. and Dannenberg, A. J. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci, 24: 96-102, 2003. 121. Maxwell, P. H. and Ratcliffe, P. J. Oxygen sensors and angiogenesis. Semin Cell Dev Biol, 13: 29-37, 2002. 122. Semenza, G. L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med, 8: S62-67, 2002. 123. Jones, M. K., Szabo, I. L., Kawanaka, H., Husain, S. S., and Tarnawski, A. S. von Hippel Lindau tumor suppressor and HIF-1alpha: new targets of NSAIDs inhibition of hypoxia-induced angiogenesis. Faseb J, 16: 264-266, 2002. 124. Palayoor, S. T., Tofilon, P. J., and Coleman, C. N. Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells. Clin Cancer Res, 9: 3150-3157, 2003. 125. Rapisarda, A., Uranchimeg, B., Scudiero, D. A., Selby, M., Sausville, E. A., Shoemaker, R. H., and Melillo, G. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res, 62: 4316-4324, 2002. 126. Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J., and Neckers, L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. Faseb J, 17: 2115-2117, 2003. 127. Lukiw, W. J., Ottlecz, A., Lambrou, G., Grueninger, M., Finley, J., Thompson, H. W., and Bazan, N. G. Coordinate activation of HIF-1 and NF-kappaB DNA binding and COX-2 and VEGF expression in retinal cells by hypoxia. Invest Ophthalmol Vis Sci, 44: 4163-4170, 2003. 128. Wang, Y. Q., Luk, J. M., Ikeda, K., Man, K., Chu, A. C., Kaneda, K., and Fan, S. T. Regulatory role of vHL/HIF-1alpha in hypoxia-induced VEGF production in hepatic stellate cells. Biochem Biophys Res Commun, 317: 358-362, 2004. 129. Thun, M. J., Henley, S. J., and Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst, 94: 252-266, 2002. 130. Reddy, B. S., Maruyama, H., and Kelloff, G. Dose-related inhibition of colon carcinogenesis by dietary piroxicam, a nonsteroidal antiinflammatory drug, during different stages of rat colon tumor development. Cancer Res, 47: 5340-5346, 1987. 131. Hsu, C. H., Yeh, K. H., Chen, L. T., Liu, J. M., Jan, C. M., Lin, J. T., Chen, Y. C., and Cheng, A. L. Weekly 24-hour infusion of high-dose 5-fluorouracil and leucovorin in the treatment of advanced gastric cancers. An effective and low-toxic regimen for patients with poor general condition. Oncology, 54: 275-280, 1997. 132. Takeda, A., Stoeltzing, O., Ahmad, S. A., Reinmuth, N., Liu, W., Parikh, A., Fan, F., Akagi, M., and Ellis, L. M. Role of angiogenesis in the development and growth of liver metastasis. Ann Surg Oncol, 9: 610-616, 2002. 133. Sharma, R. A., Harris, A. L., Dalgleish, A. G., Steward, W. P., and O'Byrne, K. J. Angiogenesis as a biomarker and target in cancer chemoprevention. Lancet Oncol, 2: 726-732, 2001. 134. Scappaticci, F. A. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol, 20: 3906-3927, 2002. 135. Folkman, J., Szabo, S., Stovroff, M., McNeil, P., Li, W., and Shing, Y. Duodenal ulcer. Discovery of a new mechanism and development of angiogenic therapy that accelerates healing. Ann Surg, 214: 414-425; discussion 426-417, 1991. 136. Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., Hayes, D. F., and Folkman, J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst, 86: 356-361, 1994. 137. Li, V. W., Folkerth, R. D., Watanabe, H., Yu, C., Rupnick, M., Barnes, P., Scott, R. M., Black, P. M., Sallan, S. E., and Folkman, J. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet, 344: 82-86, 1994. 138. Kerbel, R. and Folkman, J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer, 2: 727-739, 2002. 139. Toi, M., Matsumoto, T., and Bando, H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol, 2: 667-673, 2001. 140. Pavlakovic, H., Havers, W., and Schweigerer, L. Multiple angiogenesis stimulators in a single malignancy: implications for anti-angiogenic tumour therapy. Angiogenesis, 4: 259-262, 2001. 141. Teicher, B. A., Holden, S. A., Ara, G., Sotomayor, E. A., Huang, Z. D., Chen, Y. N., and Brem, H. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer, 57: 920-925, 1994. 142. Weinstat-Saslow, D. L., Zabrenetzky, V. S., VanHoutte, K., Frazier, W. A., Roberts, D. D., and Steeg, P. S. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res, 54: 6504-6511, 1994. 143. Hanahan, D. and Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86: 353-364, 1996. 144. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., and Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 284: 808-812, 1999. 145. Ferrara, N. Timeline: VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer, 2: 795-803, 2002. 146. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., and Holash, J. Vascular-specific growth factors and blood vessel formation. Nature, 407: 242-248, 2000. 147. Tao, H. Q., Lin, Y. Z., and Wang, R. N. Significance of vascular endothelial growth factor messenger RNA expression in gastric cancer. World J Gastroenterol, 4: 10-13, 1998. 148. Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med, 77: 527-543, 1999. 149. Huang, S. P., Wang, H. P., Chen, J. H., Wu, | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39015 | - |
| dc.description.abstract | 血管新生(angiogenesis)是許多實體腫瘤甚至血液科腫瘤發生、生長、侵犯、及轉移所不可或缺的致病機轉。近年來,慢性發炎與其相關的因子在癌症致病機轉中所扮演的角色逐漸被了解,然而發炎反應相關因子在腫瘤血管新生中的作用目前所知仍屬有限。本研究有兩部分,分別探討與發炎有關的介白質-6(interleukin-6, IL-6)及第二型環氧酵素(cyclooxygenase-2, COX-2)在胃癌中與血管新生及血管內皮生長因子(vascular endothelial growth factor, VEGF)的相關性及作用機制。
第一部分、介白質-6在胃癌腫瘤血管新生的角色 介白質-6是一個發炎前驅性細胞激素(pro-inflammatory cytokine)。過去研究報告顯示,介白質-6與幽門螺旋桿菌(Helicobacter pylori, H. pylori)相關的胃炎及胃癌(gastric carcinoma, GC)疾病病程有關,但其對於胃癌之致癌機轉仍未完全了解。血管內皮生長因子則是一個過去研究已知的胃癌重要血管新生因子。本研究目的在釐清介白質-6是否可以調節胃癌血管內皮生長因子及血管新生機制。 臨床研究部分蒐集54個取自臺大醫院胃癌手術切除標本,進行介白質-6、血管內皮生長因子、及腫瘤血管的組織免疫染色檢查。結果顯示介白質-6免疫活性與血管內皮生長因子免疫活性及腫瘤細微血管密度(microvessel density, MVD)有顯著正相關。基礎研究部分,本研究先篩檢四株胃癌細胞株對介白質-6刺激的反應,以酵素連結免疫吸收測定法(enzyme-linked immunosorbent assay, ELISA)測定其血管內皮生長因子表現量,發現其中兩株細胞株可以隨介白質-6刺激的劑量及時間增加而增加血管內皮生長因子分泌量。接下來,本研究利用火蠅發光酵素報導基因分析法(luciferase reporter gene assay)探討介白質-6的三種細胞訊息傳遞路徑中,何者與血管內皮生長因子的調控有關。結果顯示JAK/STAT路徑(JAK/STAT pathway)可以媒介介白質-6刺激血管內皮生長因子的效應。 確認介白質-6可以經由特定訊息傳遞路徑刺激胃癌細胞株產生血管內皮生長因子後,本研究利用人類臍靜脈內皮細胞(human umbilical vein endothelial cell, HUVEC)進一步探討介白質-6是否可以有效增加體外血管新生(angiogenesis in vitro)。結果顯示介白質-6的確可以增進人類臍靜脈內皮細胞的生長及管狀網絡形成。另外,以Matrigel栓子試驗(Matrigel plug assay)進行小鼠的體內血管新生(angiogenesis in vivo)分析,亦顯示介白質-6也可以增進體內血管新生。上述的介白質-6體外及體內血管新生效應,經由中和性抗血管內皮生長因子抗體拮抗血管內皮生長因子後,均可以有效抑制介白質-6引起的血管新生效應。此結果顯示介白質-6對血管新生增進的效應,主要來自於其誘導之血管內皮生長因子分泌的作用。 第二部分、第二型環氧酵素在胃癌腫瘤血管新生的角色 第二型環氧酵素(cyclooxygenase-2, COX-2)是在發炎中一個可被誘導的酵素,同時也被發現在多種惡性腫瘤中過量表現。過去研究發現,第二型環氧酵素能促進癌症腫瘤逃脫細胞凋亡(apoptosis)機制、抑制宿主免疫攻擊、和增益癌細胞侵襲力。但第二型環氧酵素與腫瘤血管新生的研究仍屬有限。 本研究臨床部分探討第二型環氧酵素與胃癌血管新生的相關性是否存在。54個取自臺大醫院胃癌手術切除標本的組織免疫染色,顯示了胃癌的第二型環氧酵素、血管內皮生長因子、和腫瘤血管密度的顯著正相關性。同時,也發現此種正相關性主要存在於Lauren氏瀰漫型胃癌、非賁門胃癌、以及幽門螺旋桿菌感染陽性胃癌。此結果一方面證實了第二型環氧酵素在胃癌血管新生扮演角色,另一方面也指出了特定胃癌亞型有此相關性。 基礎研究部分,目的建立解釋上述臨床現象的實驗模式並探索其機制。在轉殖表現第二型環氧酵素的載體後,胃癌細胞株AGS可以增加第二型環氧酵素及前列腺素E2(PGE2)表現,並增益了人類臍靜脈血管內皮細胞的增殖和管狀網絡形成。第二型環氧酵素在人類臍靜脈內皮細胞的體外生成血管效應,可經由阻斷血管內皮生長因子而被抑制,也可被第二型環氧酵素抑制劑NS-398抑制。為了闡明第二型環氧酵素增加血管新生的機制,我們建立了一個穩定表現第二型環氧酵素的胃癌細胞株AGS/COX-2和它的載體控制組細胞株AGS/pcDNA3(不表達第二型環氧酵素),轉殖效果經測定第二型環氧酵素及前列腺素E2表現量加以確認。在 6個血管新生相關的因子中,血管內皮生長因子在 AGS/COX-2顯著地表現。本研究接著轉殖反義(anti-sense)缺氧可誘導因子-1α(hypoxia-inducible factor-1α, HIF-1α)以減少細胞的缺氧可誘導因子-1α蛋白,此使血管內皮生長因子在AGS/COX-2的生成顯著減少。我們發現原型AGS細胞以前列腺素E2刺激後,缺氧可誘導因子-1α及血管內皮生長因子同時增加,但此效應可以被前列腺素E2 EP1受體拮抗劑 SC19220阻抑。此外,用NS-398先處理以減少前列腺素E2生合成後,可以抑制缺氧可誘導因子-1α的累積,同時也如同轉殖反義缺氧可誘導因子-1α般地抑制了血管內皮生長因子的製造。這部分研究成果支持「第二型環氧酵素/前列腺素E2/缺氧可誘導因子-1α/血管內皮生長因子路徑」為胃癌的腫瘤血管新生的機制之一。 結論 本研究呈現了臨床上介白質-6及第二型環氧酵素與胃癌血管新生相關的證據,並分別指出該相關存在於那些胃癌亞型。同時基礎實驗也分別闡明了關於介白質-6及第二型環氧酵素在胃癌血管新生中作用的機制。簡言之,即介白質-6循「JAK/STAT路徑」增加血管內皮生長因子生合成來增益胃癌血管新生;第二型環氧酵素循「前列腺素E2/缺氧可誘導因子-1α路徑」增加血管內皮生長因子生合成來增益胃癌血管新生。這些成果增進了慢性發炎及其相關因子對於胃癌血管新生及相關因子的了解,亦提供了未來以抗血管新生療法治療胃癌的可能方向及理論基礎。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:57:32Z (GMT). No. of bitstreams: 1 ntu-94-D89421004-1.pdf: 1372169 bytes, checksum: 569dba5e100dce2df319503dc601808a (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 0、 目錄 1
1、 中文摘要 2 2、 緒論 5 2.1 胃癌 6 2.2 癌症腫瘤的特性 7 2.3 慢性發炎與癌症 8 2.4 血管新生 9 2.5 腫瘤性疾病的血管新生 10 2.6 血管新生相關因子 12 2.7 血管內皮生長因子 13 2.8 胃癌血管新生相關的臨床研究 14 2.9 血管內皮生長因子在胃癌血管新生 17 2.10 介白質-6 19 2.11 第二型環氧酵素 25 2.12 研究目標 26 3、 研究方法與材料 28 3.1 第一部分、介白質-6、血管內皮生長因子、與胃癌血管新生 30 3.1.1 腫瘤標本 30 3.1.2 腫瘤組織檢體之免疫組織染色檢查 30 3.1.3 細微血管密度的評估 31 3.1.4 胃癌細胞株和培養 31 3.1.5 介白質-6刺激對於血管內皮生長因子的誘發作用 31 3.1.6 阻斷血管內皮生長因子誘導的訊息抑制劑:冷光素酵素報導基因鑑定 32 3.1.7 條件化培養基的製備 32 3.1.8 人類臍靜脈血管內皮細胞製備 33 3.1.9 體外(in vitro)血管新生的人類臍靜脈血管內皮細胞增殖和管形成鑑定 33 3.1.10體內(in vivo)血管新生中的Matrigel 塞子鑑定 33 3.1.11統計分析 34 3.2 第二部分、第二型環氧酵素、血管內皮生長因子、與胃癌血管新生 34 3.2.1 腫瘤標本 34 3.2.2 腫瘤組織檢體之免疫組織染色檢查 34 3.2.3 細微血管密度的評估 35 3.2.4 胃癌細胞株和培養 36 3.2.5人類臍靜脈血管內皮細胞製備 36 3.2.6 第二型環氧酵素的短暫轉殖與條件化培養基的製備 36 3.2.7 建立穩定表達第二型環氧酵素的胃癌細胞株 36 3.2.8 西方墨點分析 37 3.2.9 體外(in vitro)血管新生的人類臍靜脈血管內皮細胞增殖和管形成鑑定 37 3.2.10 酵素連結免疫吸收測定法測定前列腺素E2 和血管內皮生長因子 38 3.2.11 血管生成因子的RNA 萃取和反轉錄酶-聚合酵素鏈鎖反應 38 3.2.12 外源性前列腺素E2刺激和前列腺素E2之EP1 受體拮抗劑SC19002的阻斷效果對AGS細胞株的影響 39 3.2.13 以反義缺氧可誘導因子-1α寡核酸和第二型環氧酵素抑制劑 NS-398處理表達第二型環氧酵素胃癌細胞 39 3.2.14 統計分析 40 4、 結果 41 4.1 第一部分、介白質-6、血管內皮生長因子、與胃癌血管新生 42 4.1.1 介白質-6與胃癌的血管內皮生長因子表現和腫瘤血管有正相關性 42 4.1.2 介白質-6 誘發各種胃癌細胞株製造血管內皮生長因子 43 4.1.3 JAK/STAT路徑中介介白質-6在胃癌細胞中誘導血管內皮生長因子生成的訊息傳遞路徑 43 4.1.4 在胃癌中,介白質-6主要經由血管內皮生長因子刺激人類臍靜脈血管內皮細胞的增殖和管狀網絡形成 44 4.1.5 介白質-6主要經由血管內皮生長因子增加胃癌體內血管新生 45 4.2 第二部分、第二型環氧酵素、血管內皮生長因子、與胃癌血管新生 45 4.2.1 第二型環氧酵素對胃癌的血管內皮生長因子和腫瘤血管成正相關性 45 4.2.2 胃癌細胞過度表現第二型環氧酵素促進體外血管新生 46 4.2.3 血管生成因子血管內皮生長因子和缺氧可誘導因子-1被第二型環氧酵素經前列腺素E2依賴的路徑向上調(第二型環氧酵素促進血管內皮生長因子生成、第二型環氧酵素經前列腺素E2向上調控血管內皮生長因子生成、第二型環氧酵素經缺氧可誘導因子-1向上調控血管內皮生長因子生成) 47 5、 討論 49 5.1 第一部分、介白質-6、血管內皮生長因子、與胃癌血管新生 51 5.1.1 介白質-6 和胃的疾病 52 5.1.2本研究介白質-6、血管內皮生長因子、與胃癌血管新生的臨床研究意義 54 5.1.3 本研究中介白質-6、血管內皮生長因子、與胃癌血管新生的實驗研究意義 58 5.1.4 介白質-6在胃癌細胞株誘導血管內皮生長因子的生成 58 5.1.5 介白質-6在胃癌細胞誘導血管內皮生長因子基因表現的訊息傳遞路徑 59 5.1.6 介白質-6經血管內皮生長因子作用的體外血管新生效果 61 5.1.7 介白質-6經血管內皮生長因子作用的in vivo血管新生效果 62 5.1.8 細胞的血管內皮生長因子和它的細胞激素調控者 62 5.1.9 介白質-6 和血管內皮生長因子之間的關係仰賴細胞類型而定 63 介白質-6 和其他胃癌致癌作用機制 64 5.2 第二部分、第二型環氧酵素、血管內皮生長因子、與胃癌血管新生 64 5.2.1 本研究中第二型環氧酵素、血管內皮生長因子、與胃癌血管新生的臨床研究意義 64 5.2.2 血管內皮生長因子和癌症 65 5.2.3 第二型環氧酵素和血管內皮生長因子之間的關係仰賴細胞類型而定 65 5.2.4 本研究中第二型環氧酵素、血管內皮生長因子、與胃癌血管新生的實驗研究意義 66 5.2.5 第二型環氧酵素誘導血管內皮生長因子的機制 67 5.2.6 第二型環氧酵素與癌症預防和治療 69 5.3 未在本研究探討的議題 69 5.4 本研究臨床部分其他討論 70 5.5 抗血管新生治療的臨床意涵 71 5.6 癌腫瘤轉移 72 5.7 結語 73 6、 展望 74 6.1 癌症治療的困境-展望抗腫瘤血管新生療法 75 6.2 抗腫瘤血管新生療法 75 6.3 抗血管新生療法的臨床應用 78 6.4 抗血管新生療法的臨床應用血管新生做為一個化學預防藥物療效的標記 81 6.5 抗血管新生治療做為治療胃癌的一個方法 82 6.6 結語 83 7、 論文英文簡述 86 7.1 Introduction 87 7.2 Part I: IL-6, VEGF, and angiogenesis in GC 88 7.2.0 Study findings 90 7.2.1 IL-6 was positively associated with VEGF expression and tumor vasculature in GC. 90 7.2.2 IL-6 induces VEGF production in various GC cell lines. 91 7.2.3 7.2JAK/STAT pathway mediates signaling of IL-6 on VEGF induction in GC cell. 91 7.2.4 IL-6 stimulated the proliferation and tube formation of HUVEC primarily via VEGF in GC. 91 7.2.5 IL-6 increased in vivo angiogenesis primarily via VEGF in GC. 92 7.2.6 Discussion 93 7.3 Part II: COX-2, VEGF, and angiogenesis in GC 98 7.3.0 Study findings 99 7.3.1 COX-2 Positively Correlated with VEGF and Tumor Vasculature in GC 99 7.3.2 Over-expression of COX-2 in GC Cells Promoted in Vitro Angiogenesis 100 7.3.3 Angiogenic Factor VEGF and HIF-1a Were Up-Regulated by COX-2 Over-expression through PGE2-dependent Pathway 101 7.3.4 Discussion 102 8、 參考文獻 106 9、 圖表 126 10、 附錄 (修業期間發表之相關論文) 136 | |
| dc.language.iso | zh-TW | |
| dc.subject | 介白質-6 | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | 胃癌 | zh_TW |
| dc.subject | 血管內皮生長因子 | zh_TW |
| dc.subject | 第二型環氧酵素 | zh_TW |
| dc.subject | Vascular Endothelial Growth Factor | en |
| dc.subject | Interleukin-6 | en |
| dc.subject | Angiogenesis | en |
| dc.subject | Cyclooxygenase-2 | en |
| dc.subject | Gastric Carcinoma | en |
| dc.title | 介白質-6與第二型環氧酵素增益胃癌之血管內皮生長因子及腫瘤血管新生 | zh_TW |
| dc.title | Interleukin-6 and Cyclooxygenase-2 Increase Vascular Endothelial Growth Factor and Angiogenesis in Gastric Carcinoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 彭汪嘉康,賴明陽,黃智興 | |
| dc.subject.keyword | 介白質-6,第二型環氧酵素,血管內皮生長因子,胃癌,血管新生, | zh_TW |
| dc.subject.keyword | Cyclooxygenase-2,Gastric Carcinoma,Angiogenesis,Vascular Endothelial Growth Factor,Interleukin-6, | en |
| dc.relation.page | 138 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-05-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
