Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39010
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳振山(Jen-San Chen)
dc.contributor.authorCheng-Han Yangen
dc.contributor.author楊承翰zh_TW
dc.date.accessioned2021-06-13T16:57:16Z-
dc.date.available2005-06-14
dc.date.copyright2005-06-14
dc.date.issued2005
dc.date.submitted2005-05-19
dc.identifier.citation[1] Timoshenko, S.P., 1935, “Buckling of Flat Curved Bars and Slightly Curved Plates,” ASME Journal of Applied Mechanics, 2, pp. 17-20.
[2] Hoff, N.J., and Bruce, V.G., 1954, “Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches,” Journal of Mathematics and Physics, 32, pp. 276-288.
[3] Simitses, G.J., 1986, Elastic Stability of Structures, Chapter 7, R.E. Krieger Publishing Co., Malabar, Florida.
[4] Simitses, G.J., 1990, Dynamic Stability of Suddenly Loaded Structures, Springer-Verlag, New York.
[5] Chen, J.-S., and Liao, C.-Y., 2005, “Experiment and Analysis on the Free Dynamics of a Shallow Arch After an Impact Load at the End,” ASME Journal of Applied Mechanics, 72, pp. 54-61.
[6] Huang, N.C., 1972, “Dynamic Buckling of Some Elastic Shallow Structures Subject to Periodic Loading with High Frequency,” International Journal of Solids and Structures, 8, 315-326.
[7] Plaut R.H., and Hsieh, J.-C., 1985, “Oscillations and Instability of a Shallow Arch under Two-Frequency Excitation,” Journal of Sound and Vibration, 102, 189-201.
[8] Blair, K.B., Krousgrill, C.M., and Farris, T.N., 1996, “Non-Linear Dynamic Response of Shallow Arches to Harmonic Forcing,” Journal of Sound and Vibration, 194, 353-367.
[9] Thomsen, J.J., 1992, “Chaotic Vibrations of Non-Shallow Arches,” Journal of Sound and Vibration, 153, 239-258.
[10] Bolotin, V.V., 1964, The Dynamic Stability of Elastic Systems, Holden-Day, Inc., San Francisco.
[11] Tien, W.-M., Sri Namachchivaya, N., and Bajaj, A.K., 1994a, “Non-Linear Dynamics of a Shallow Arch under Periodic Excitation – I. 1:1 Internal Resonance,” International Journal of Non-Linear Mechanics, 29, 367-386.
[12] Tien, W.-M., Sri Namachchivaya, N., and Bajaj, A.K., 1994b, “Non-Linear Dynamics of a Shallow Arch under Periodic Excitation – II. 1:2 Internal Resonance,” International Journal of Non-Linear Mechanics, 28, 349-366.
[13] Bi, Q, and Dai, H.H., 2000, “Analysis of Nonlinear Dynamics and Bifurcations of a Shallow Arch Subjected to Periodic Excitation with Internal Resonance,” Journal of Sound and Vibration, 233, 557-571.
[14] Malhotra, N, and Sri Namachchivaya, N., 1997, “Chaotic Dynamics of Shallow Arch Structures under 1:1 Resonance,” Journal of Engineering Mechanics, 123, 620-627.
[15] Malhotra, N, and Sri Namachchivaya, N., 1997, “Chaotic Dynamics of Shallow Arch Structures under 1:2 Resonance,” Journal of Engineering Mechanics, 123, 612-619.
[16] Rao, S. S., 1995, Mechanical Vibrations, 3rd edition, Addision-Wesley Publishing Company, Reading, Massachusetts.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39010-
dc.description.abstract本文以實驗方法與理論研究淺拱樑於端點聯結電磁激振器之非線性振動。在實驗方面,透過控制流經激振器之電流產生施加於激振器中央線圈的簡諧磁力,而此時端點受到簡諧力之拱形樑其端點運動卻不一定為簡諧運動,尤其是拱形樑之側向運動的振幅很大時。當激振頻率靠近第n個自然頻率時,本文中發現拱形樑外形之幾何瑕疵為能否激發出第n個模態的關鍵,並採用多尺度法分析以求得穩態響應振幅之解析解與幾何瑕疵之間的關係。此外,當激振頻率靠近第n個自然頻率之兩倍時,可同時存在兩個不同振幅之穩定穩態響應,且在此頻率附近將振動頻率由低頻調向高頻時,可觀察到由於穩定穩態解的不連續所造成之振幅躍增現象,對此案例而言,幾何瑕疵的影響非常小,而多尺度分析不僅僅預測出穩定與非穩定穩態解之振幅與相角,且預測出該振幅躍增現象的發生。zh_TW
dc.description.abstractIn this paper we study, both theoretically and experimentally, the nonlinear vibration of a shallow arch with one end attached to an electro-mechanical shaker. In the experiment we generate harmonic magnetic force on the central core of the shaker by controlling the electric current flowing into the shaker. The end motion of the arch is in general not harmonic, especially when the amplitude of lateral vibration is large. In the case when the excitation frequency is close to the n-th natural frequency of the arch, we found that geometrical imperfection is the key for the n-th mode to be excited. Analytical formula relating the amplitude of the steady state response and the geometrical imperfection can be derived via a multiple scale analysis. In the case when the excitation frequency is close to two times of the n-th natural frequency two stable steady state responses can exist simultaneously. As a consequence jump phenomenon is observed when the excitation frequency sweeps upward. The effect of geometrical imperfection on the steady state response is minimal in this case. The multiple scale analysis not only predicts the amplitudes and phases of both the stable and unstable solutions, but also predicts analytically the frequency at which jump phenomenon occurs.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:57:16Z (GMT). No. of bitstreams: 1
ntu-94-R91522520-1.pdf: 738722 bytes, checksum: 9220f1145a0e95dd96073e081debc16a (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents封面Ⅰ
致謝Ⅱ
中文摘要Ⅲ
英文摘要Ⅳ
目錄Ⅴ
第一章 導論1
第二章 實驗設備4
第三章 運動方程式8
第四章 自然頻率與等效阻尼11
4.1 激振器-拱形樑結構之自然頻率11
4.2 等效阻尼之估計12
第五章 Coupling Resonance15
5.1 coupling resonance之實驗與討論15
5.2 coupling resonance之多尺度法分析16
第六章 Parametric Resonance24
6.1 parametric resonance之實驗與討論24
6.2 coupling resonance之多尺度法分析25
第七章 結論31
參考文獻33
附圖目錄35
dc.language.isozh-TW
dc.subject非線性振動zh_TW
dc.subject拱形樑zh_TW
dc.subject幾何瑕疵zh_TW
dc.subjectgeometrical imperfectionen
dc.subjectnonlinear vibrationen
dc.subjectarchen
dc.title拱形樑於端點受到諧和激振之非線性振動實驗及理論zh_TW
dc.titleExperiment and Theory on the Nonlinear Vibration of a Shallow Arch under Harmonic Excitation at the Enden
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee伍次寅(Tzu-Yin Wu),周元昉(Yuan-Fang Chou)
dc.subject.keyword拱形樑,幾何瑕疵,非線性振動,zh_TW
dc.subject.keywordgeometrical imperfection,arch,nonlinear vibration,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2005-05-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
721.41 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved