Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38983
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑華
dc.contributor.authorI-Shing Yuen
dc.contributor.author游益興zh_TW
dc.date.accessioned2021-06-13T16:55:44Z-
dc.date.available2005-06-15
dc.date.copyright2005-06-15
dc.date.issued2005
dc.date.submitted2005-06-08
dc.identifier.citation1. Ullrich V, Nusing R. Thromboxane synthase. From isolation to function. Stroke. 1990; 21: 134-138.
2. Tanabe T, Ullrich V. Prostacyclin and thromboxane synthases. J Lipid Mediat Cell Signal. 1995; 12: 243-255.
3. Ruan KH, Wang LH, Wu KK, Kulmacz RJ. Amino-terminal topology of thromboxane synthase in the endoplasmic reticulum. J Biol Chem. 1993; 268:19483-19490.
4. Ogletree ML. Overview of physiological and pathophysiological effects of thromboxane A2. Fed Proc. 1987; 46: 133-138.
5. Patrono C. Biosynthesis and pharmacological modulation of thromboxane in humans. Circulation. 1990; 81: I12-15; discussion I22-13.
6. Lages B, Malmsten C, Weiss HJ, Samuelsson B. Impaired platelet response to thromboxane-A2 and defective calcium mobilization in a patient with a bleeding disorder. Blood. 1981; 57: 545-552.
7. Samama M, Lecrubier C, Conard J, Hotchen M, Breton-Gorius J, Vargaftig B, Chignard M, Lagarde M, Dechavanne M. Constitutional thrombocytopathy with subnormal response to thromboxane A2. Br J Haematol. 1981; 48: 293-303.
8. Wu KK, Le Breton GC, Tai HH, Chen YC. Abnormal platelet response to thromboxane A2. J Clin Invest. 1981; 67: 1801-1804.
9. Wu KK, Minkoff IM, Rossi EC, Chen YC. Hereditary bleeding disorder due to a primary defect in platelet release reaction. Br J Haematol. 1981; 47: 241-249.
10. Mestel F, Oetliker O, Beck E, Felix R, Imbach P, Wagner HP. Severe bleeding associated with defective thromboxane synthetase. Lancet. 1980; 1: 157.
11. Weiss HJ, Lages BA. Possible congenital defect in platelet thromboxane synthetase. Lancet. 1977; 1: 760-761.
12. Hirata T, Kakizuka A, Ushikubi F, Fuse I, Okuma M, Narumiya S. Arg60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J Clin Invest. 1994; 94: 1662-1667.
13. Ali S, Davis MG, Becker MW, Dorn GW, 2nd. Thromboxane A2 stimulates vascular smooth muscle hypertrophy by up- regulating the synthesis and release of endogenous basic fibroblast growth factor. J Biol Chem. 1993; 268: 17397-17403.
14. Hanasaki K, Nakano T, Arita H. Receptor-mediated mitogenic effect of thromboxane A2 in vascular smooth muscle cells. Biochem Pharmacol. 1990; 40: 2535-2542.
15. Baylis C. Effects of administered thromboxanes on the intact, normal rat kidney. Ren Physiol. 1987; 10: 110-121
16. Mene P, Dunn MJ. Contractile effects of TxA2 and endoperoxide analogues on cultured rat glomerular mesangial cells. Am J Physiol. 1986; 251: F1029-1035.
17. Wilcox CS, Welch WJ, Snellen H. Thromboxane mediates renal hemodynamic response to infused angiotensin II. Kidney Int. 1991; 40: 1090-1097.
18. Welch WJ, Wilcox CS. Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic. Role of macula densa. J Clin Invest. 1992; 89: 1857-1865.
19. Burch RM, Halushka PV. Vasopressin stimulates prostaglandin and thromboxane synthesis in toad bladder epithelial cells. Am J Physiol. 1982; 243: F593-597.
20. Donadio JV, Jr., Anderson CF, Mitchell JC, 3rd, Holley KE, Ilstrup DM, Fuster V, Chesebro JH. Membranoproliferative glomerulonephritis. A prospective clinical trial of platelet-inhibitor therapy. N Engl J Med. 1984; 310: 1421-1426.
21. FitzGerald GA, Healy C, Daugherty J. Thromboxane A2 biosynthesis in human disease. Fed Proc. 1987; 46: 154-158.
22. Craven PA, Melhem MF, DeRubertis FR. Thromboxane in the pathogenesis of glomerular injury in diabetes. Kidney Int. 1992; 42: 937-946.
23. DeRubertis FR, Craven PA. Eicosanoids in the pathogenesis of the functional and structural alterations of the kidney in diabetes. Am J Kidney Dis. 1993; 22: 727-735.
24. Endoh M, Kashem A, Yamauchi F, Yano N, Nomoto Y, Sakai H, Kurokawa K. Expression of thromboxane synthase in kidney tissues from patients with IgA nephropathy. Clin Nephrol. 1997; 47: 168-175.
25. Ushikubi F, Aiba Y, Nakamura K, Namba T, Hirata M, Mazda O, Katsura Y, Narumiya S. Thromboxane A2 receptor is highly expressed in mouse immature thymocytes and mediates DNA fragmentation and apoptosis. J Exp Med. 1993; 178: 1825-1830.
26. Ruiz P, Rey L, Spurney R, Coffman T, Viciana A. Thromboxane augmentation of alloreactive T cell function. Transplantation. 1992; 54: 498-505.
27. Ceuppens JL, Vertessen S, Deckmyn H, Vermylen J. Effects of thromboxane A2 on lymphocyte proliferation. Cell Immunol. 1985; 90: 458-463.
28. Farrukh IS, Michael JR, Summer WR, Adkinson NF, Jr., Gurtner GH. Thromboxane-induced pulmonary vasoconstriction: involvement of calcium. J Appl Physiol. 1985; 58: 34-44.
29. Fitzgerald DJ, Rocki W, Murray R, Mayo G, FitzGerald GA. Thromboxane A2 synthesis in pregnancy-induced hypertension. Lancet. 1990; 335: 751-754.
30. Hsu CY, Halushka PV, Hogan EL, Banik NL, Lee WA, Perot PL, Jr. Alteration of thromboxane and prostacyclin levels in experimental spinal cord injury. Neurology. 1985; 35: 1003-1009.
31. Chen ST, Hsu CY, Hogan EL, Halushka PV, Linet OI, Yatsu FM. Thromboxane, prostacyclin, and leukotrienes in cerebral ischemia. Neurology. 1986;36: 466-470.
32. Whittle BJ, Kauffman GL, Moncada S. Vasoconstriction with thromboxane A2 induces ulceration of the gastric mucosa. Nature. 1981; 292: 472-474.
33. Needleman P, Moncada S, Bunting S, Vane JR, Hamberg M, Samuelsson B. Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature. 1976; 261: 558-560.
34. Sun FF, Chapman JP, McGuire JC. Metabolism of prostaglandin endoperoxide in animal tissues. Prostaglandins. 1977; 14: 1055-1074
35. Haurand M, Ullrich V. Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme. J Biol Chem. 1985; 260: 15059-15067.
36. Shen RF, Tai HH. Immunoaffinity purification and characterization of thromboxane synthase from porcine lung. J Biol Chem. 1986; 261: 11592-11599.
37. Needleman P, Minkes M, Raz A. Thromboxanes: selective biosynthesis and distinct biological properties. Science. 1976; 193: 163-165.
38. Diczfalusy U, Falardeau P, Hammarstrom S. Conversion of prostaglandin endoperoxides to C17-hydroxy acids catalyzed by human platelet thromboxane synthase. FEBS Lett. 1977; 84: 271-274.
39. Hecker M, Ullrich V. On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem. 1989; 264: 141-150.
40. Liu Y, Yoden K, Shen RF, Tai HH. 12-L-hydroxy-5,8,10-heptadecatrienoic acid (HHT) is an excellent substrate for NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Biochem Biophys Res Commun. 1985; 129: 268-274.
41. Chaudhary AK, Nokubo M, Reddy GR, Yeola SN, Morrow JD, Blair IA, Marnett LJ. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science. 1994; 265: 1580-1582.
42. Jones DA, Fitzpatrick FA. Thromboxane A2 synthase. Modification during 'suicide' inactivation. J Biol Chem. 1991; 266: 23510-23514.
43. Ohashi K, Ruan KH, Kulmacz RJ, Wu KK, Wang LH. Primary structure of human thromboxane synthase determined from the cDNA sequence. J Biol Chem. 1992; 267: 789-793.
44. Yokoyama C, Miyata A, Ihara H, Ullrich V, Tanabe T. Molecular cloning of human platelet thromboxane A synthase. Biochem Biophys Res Commun. 1991; 178: 1479-1484.
45. Zhang L, Chase MB, Shen RF. Molecular cloning and expression of murine thromboxane synthase. Biochem Biophys Res Commun. 1993; 194: 741-748.
46. Shen RF, Zhang L, Baek SJ, Tai HH, Lee KD. The porcine thromboxane synthase-encoding cDNA: sequence, mRNA expression and enzyme production in Sf9 insect cells. Gene. 1994; 140: 261-265.
47. Tone Y, Miyata A, Hara S, Yukawa S, Tanabe T. Abundant expression of thromboxane synthase in rat macrophages. FEBS Lett. 1994; 340: 241-244.
48. Wang LH, Ohashi K, Wu KK. Isolation of partial complementary DNA encoding human thromboxane synthase. Biochem Biophys Res Commun. 1991; 177: 286-291.
49. Ruan KH, Li P, Kulmacz RJ, Wu KK. Characterization of the structure and membrane interaction of NH2- terminal domain of thromboxane A2 synthase. J Biol Chem. 1994; 269: 20938-20942.
50. Xia Z, Tai HH. Bacterial expression of functional membrane-bound thromboxane synthase having intact sequence and truncated N-terminal hydrophobic segment. Arch Biochem Biophys. 1995; 321: 531-534.
51. Ruan KH, Milfeld K, Kulmacz RJ, Wu KK. Comparison of the construction of a 3-D model for human thromboxane synthase using P450cam and BM-3 as templates: implications for the substrate binding pocket. Protein Eng. 1994; 7: 1345-1351.
52. Wang LH, Matijevic-Aleksic N, Hsu PY, Ruan KH, Wu KK, Kulmacz RJ. Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis. J Biol Chem. 1996; 271: 19970-19975.
53. Xia Z, Shen RF, Baek SJ, Tai HH. Expression of two different forms of cDNA for thromboxane synthase in insect cells and site-directed mutagenesis of a critical cysteine residue. Biochem J. 1993; 295: 457-461.
54. Zhang L, Xiao H, Schultz RA, Shen RF. Genomic organization, chromosomal localization, and expression of the murine thromboxane synthase gene. Genomics. 1997; 45: 519-528.
55. Miyata A, Yokoyama C, Ihara H, Bandoh S, Takeda O, Takahashi E, Tanabe T. Characterization of the human gene (TBXAS1) encoding thromboxane synthase. Eur J Biochem. 1994; 224: 273-279.
56. Baek SJ, Lee KD, Shen RF. Genomic structure and polymorphism of the human thromboxane synthase- encoding gene. Gene. 1996; 173: 251-256.
57. Harada N, Yamada K, Saito K, Kibe N, Dohmae S, Takagi Y. Structural characterization of the human estrogen synthetase (aromatase) gene. Biochem Biophys Res Commun. 1990; 166: 365-372.
58. Hashimoto H, Toide K, Kitamura R, Fujita M, Tagawa S, Itoh S, Kamataki T. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur J Biochem. 1993; 218: 585-595.
59. Nebert DW, Gonzalez FJ. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987; 56: 945-993
60. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, et al. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991; 10: 1-14.
61. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996; 6: 1-42.
62. Sinzinger H, O'Grady J, Demers LM, Granstrom E, Kumlin M, Nell A, Peskar BA, Salmon JA, Westlund P. Thromboxane in cardiovascular disease. Eicosanoids. 1990; 3: 59-64
63. Tazawa R, Green ED, Ohashi K, Wu KK, Wang LH. Characterization of the complete genomic structure of human thromboxane synthase gene and functional analysis of its promoter. Arch Biochem Biophys. 1996; 334: 349-356.
64. Shen RF, Tai HH. Monoclonal antibodies to thromboxane synthase from porcine lung. Production and application to development of a tandem immunoradiometric assay. J Biol Chem. 1986; 261: 11585-11591.
65. Nusing R, Sauter G, Fehr P, Durmuller U, Kasper M, Gudat F, Ullrich V. Localization of thromboxane synthase in human tissues by monoclonal antibody Tu 300. Virchows Arch A Pathol Anat Histopathol. 1992; 421: 249-254
66. Woodworth SH, Li X, Lei ZM, Rao CV, Yussman MA, Spinnato JA, 2nd, Yokoyama C, Tanabe T, Ullrich V. Eicosanoid biosynthetic enzymes in placental and decidual tissues from preeclamptic pregnancies: increased expression of thromboxane-A2 synthase gene. J Clin Endocrinol Metab. 1994; 78: 1225-1231.
67. Takahashi N, Takeuchi K, Abe T, Murakami K, Yamaguchi M, Abe K. Immunohistochemical localization of thromboxane receptor and thromboxane synthase in rat testis. Endocrinology. 1995; 136: 4143-4146.
68. Lee KD, Baek SJ, Shen RF. Cloning and characterization of the human thromboxane synthase gene promoter. Biochem Biophys Res Commun. 1994; 201: 379-387.
69. Wang LH, Tazawa R, Lang AQ, Wu KK. Alternate splicing of human thromboxane synthase mRNA. Arch Biochem Biophys. 1994; 315: 273-278.
70. Ingerman-Wojenski C, Silver MJ, Smith JB, Macarak E. Bovine endothelial cells in culture produce thromboxane as well as prostacyclin. J Clin Invest. 1981; 67: 1292-1296.
71. Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev. 1994; 46: 205-229.
72. Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature. 1991; 349: 617-620.
73. Namba T, Sugimoto Y, Hirata M, Hayashi Y, Honda A, Watabe A, Negishi M, Ichikawa A, Narumiya S. Mouse thromboxane A2 receptor: cDNA cloning, expression and northern blot analysis. Biochem Biophys Res Commun. 1992; 184: 1197-1203.
74. Baldassare JJ, Tarver AP, Henderson PA, Mackin WM, Sahagan B, Fisher GJ. Reconstitution of thromboxane A2 receptor-stimulated phosphoinositide hydrolysis in isolated platelet membranes: involvement of phosphoinositide-specific phospholipase C-beta and GTP-binding protein Gq. Biochem J. 1993; 291: 235-240.
75. Arita H, Nakano T, Hanasaki K. Thromboxane A2: its generation and role in platelet activation. Prog Lipid Res. 1989; 28: 273-301.
76. Dorn GW 2nd, Becker MW. Thromboxane A2 stimulated signal transduction in vascular smooth muscle. J Pharmacol Exp Ther. 1993; 265: 447-456.
77. Morinelli TA, Zhang LM, Newman WH, Meier KE. Thromboxane A2/prostaglandin H2-stimulated mitogenesis of coronary artery smooth muscle cells involves activation of mitogen-activated protein kinase and S6 kinase. J Biol Chem. 1994; 269: 5693-5698.
78. Thomas DW, Mannon RB, Mannon PJ, Latour A, Oliver JA, Hoffman M, Smithies O, Koller BH, Coffman TM. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J Clin Invest. 1998; 102: 1994-2001.
79. van der Lugt N, Maandag ER, te Riele H, Laird PW, Berns A. A pgk:hprt fusion as a selectable marker for targeting of genes in mouse embryonic stem cells: disruption of the T-cell receptor delta- chain-encoding gene. Gene. 1991; 105: 263-267.
80. Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell. 1991; 65: 1153-1163.
81. Hooper M, Hardy K, Handyside A, Hunter S, Monk M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 1987; 326: 292-294.
82. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell. 1994; 79: 679-694.
83. Yu IS, Chen HJ, Lee YS, et al. Mice deficient in hepsin, a serine protease, exhibit normal embryogenesis and unchanged hepatocyte regeneration ability. Thromb. Haemost. 2000; 84: 865-870.
84. Ramirez-Solis R, Davis AC, Bradley A. Gene targeting in embryonic stem cells. Methods Enzymol. 1993; 225: 855-878.
85. Lin SR, Yu IS, Huang PH, Tsai CW, Lin SW. Chimeric mice with disruption of the gene coding for phosphatidylinositol glycan class A (Pig-a) were defective in embryogenesis and spermatogenesis. Br. J. Haematol. 2000; 110: 682-693.
86. Stenberg PE, Barrie RJ, Pestina TI, et al. Prolonged bleeding time with defective platelet filopodia formation in the Wistar Furth rat. Blood. 1998; 91: 1599-1605.
87. Dejana E, Callioni A, Quintana A, de Gaetano G. Bleeding time in laboratory animals. II - A comparison of different assay conditions in rats. Thromb. Res. 1979; 15: 191-197.
88. Matsuda H, Ushio H, Geba GP, Askenase PW. Human platelets can initiate T cell-dependent contact sensitivity through local serotonin release mediated by IgE antibodies. J. Immunol. 1997; 158: 2891-2897.
89. Defreyn G, Machin SJ, Carreras LO, Dauden MV, Chamone DAF, Vermylen J. Familial bleeding tendency with partial platelet thromboxane synthetase deficiency: reorientation of cyclic endoperoxide metabolism. Brit. J Haematol. 1981; 49: 29-41.
90. Deveaux, S., Cohen-Kaminsky, S., Shivdasani, R.A., Andrews, N.C., Filipe, A., Kuzniak, I., Orkin, S.H., Romeo, P.H., and Mignotte, V. p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes. EMBO J. 1997; 16: 5654-5661.
91. Shivdasani, R.A., Rosenblatt, M.F., Zucker-Franklin, D., Jackson, C.W., Hunt, P., Saris, C.J.M., and Orkin, S.H. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 1995; 81: 695-704.
92. Vezza, R., Mezzasoma, A. M., Venditti, G., and Gresele, P. Prostaglandin endoperoxides and thromboxane A2 activate the same receptor isoforms in human platelets. Thromb. Haemost. 2002; 87: 114-121.
93. Myers, A.K., and Ramwell, P.W. Thromboxane in sudden death. Adv. Prostaglandin Thromboxane Leukot. Res. 1985; 13: 81-88.
94. Torres Duarte, A.P., Ramwell, P., and Myers, A. Sex differences in mouse platelet aggregation. Thromb Res. 1986; 43: 33-39.
95. Patrono C, FitzGerald GA. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Arterioscler Thromb Vasc Biol. 1997; 17: 2309-2315.
96. Pratico D, Tangirala RK, Rader DJ, Rokach J, FitzGerald GA. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat Med. 1998; 4: 1189-1192.
97. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001; 294: 1871-1875.
98. Zhao L, Funk CD. Lipoxygenase pathways in atherogenesis. Trends Cardiovasc Med. 2004; 14: 191-195.
99. Sendobry SM, Cornicelli JA, Welch K, Bocan T, Tait B, Trivedi BK, Colbry N, Dyer RD, Feinmark SJ, Daugherty A. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br J Pharmacol. 1997; 120: 1199-1206.
100. Bocan TM, Rosebury WS, Mueller SB, Kuchera S, Welch K, Daugherty A, Cornicelli JA. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis. 1998; 136: 203-16.
101. Aiello RJ, Bourassa PA, Lindsey S, Weng W, Freeman A, Showell HJ. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler Thromb Vasc Biol. 2002; 22: 443-449.
102. Subbarao K, Jala VR, Mathis S, Suttles J, Zacharias W, Ahamed J, Ali H, Tseng MT, Haribabu B. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol. 2004; 24: 369-375.
103. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest. 1999; 103: 1597-1604.
104. George J, Afek A, Shaish A, Levkovitz H, Bloom N, Cyrus T, Zhao L, Funk CD, Sigal E, Harats D. 12/15-Lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation. 2001; 104: 1646-1650.
105. Zhao L, Cuff CA, Moss E, Wille U, Cyrus T, Klein EA, Pratico D, Rader DJ, Hunter CA, Pure E, Funk CD. Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia. J Biol Chem. 2002; 277: 35350-35356.
106. Mehrabian M, Allayee H, Wong J, Shi W, Wang XP, Shaposhnik Z, Funk CD, Lusis AJ. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res. 2002; 91: 120-126.
107. Loftin, C.D., Trivedi, D.B., Tiano, H.F., Clark, J.A., Lee, C.A., Epstein, J.A., Morham, S.G., Breyer, M.D., Nguyen, M., Hawkins, B.M., et al. Failure of ductus arteriosus closure and remodeling in neonatal mice deficient in cyclooxygenase-1 and cyclooxygenase-2. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 1059-1064.
108. Nguyen, M., Camenisch, T., Snouwaert, J.N., Hicks, E., Coffman, T.M., Anderson, P.A., Malouf, N.N., and Koller, B.H. The prostaglandin receptor EP4 triggers remodeling of the cardiovascular system at birth. Nature 1997; 390: 78-81.
109. Segi, E., Sugimoto, Y., Yamasaki, A., Aze, Y., Oida, H., Nishimura, T., Murata, T., Matsuoka, T., Ushikubi, F., Hirose, M., et al. Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem. Biophys. Res. Commun. 1998; 246: 7-12.
110. Loftin, C.D., Trivedi, D.B., and Langenbach, R. Cyclooxygenase-1-selective inhibition prolongs gestation in mice without adverse effects on the ductus arteriosus. J. Clin. Invest. 2002; 110: 549-557.
111. Verstraete, M., and Zoldhelyi, P. Novel antithrombotic drugs in development. Drugs 1995; 49: 856-884.
112. De Clerck, F., Beetens, J., Van de Water, A., Vercammen, E., and Janssen, P.A. R68070: thromboxane A2 synthetase inhibition and thromboxane A2/prostaglandin endoperoxide receptor blockade combined in one molecule--II. Pharmacological effects in vivo and ex vivo. Thromb. Haemost. 1989; 61: 43-49.
113. Patrono, C. Biosynthesis and pharmacological modulation of thromboxane in humans. Circulation 1990; 81 (1 suppl 1): I12-I15.
114. Berrettini, M., De Cunto, M., Parise, P., Grasselli, S., and Nenci, G.G. 'In vitro' and 'ex vivo' effects of picotamide, a combined thromboxane A2-synthase inhibitor and -receptor antagonist, on human platelets. Eur. J. Clin. Pharmacol. 1990; 39: 495-500.
.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38983-
dc.description.abstractThromboxane A2合成酶(TXA2 synthase)所生產的TXA2具有引發血小板凝集、血管收縮及調節腎臟等功能,且在包含心肌梗塞、中風、氣喘及許多的腎臟疾病發生的過程中均扮演重要的角色。除了參與眾所周知的凝血與血栓形成外,TXA2被認為可能參與血小板生成及淋巴球的分化。為了進一步了解其生理功能,本論文以基因轉殖的方式製作TXA2合成酶基因剔除(TXAS-/-)小鼠模式。分析結果發現TXAS-/-小鼠具有正常的骨髓巨核細胞,其胸腺及脾臟的淋巴球數量也正常。但其出血時間異常且以花生四烯酸(arachidonic acid;AA)刺激TXAS-/-小鼠的血小板,血小板無法凝集且無法釋出TXB2,但是prostaglandin-E2 (PGE2)、PGD2及PGF2α的代謝卻增加。以花生四烯酸注入正常的小鼠血管內會造成小鼠血壓急速下降、心跳停止而導致死亡,但TXAS-/-小鼠或是以TP受體拮抗劑(antagonist)處理過的野生型小鼠卻不會休克。進一步實驗發現在花生四烯酸刺激下,當TP受體存在時,TXAS-/-小鼠可維持正常的血壓,但是當TP受體以拮抗劑阻斷時,血壓即下降,此結果顯示受體參與血壓的維持。此外,本論文發現TXAS缺乏會影響花生四烯酸經lipoxygenase路徑中15-HETE及LTB4的生成,顯示TXA2可調節其他發炎介體(inflammatory mediator)的生成。由目前的實驗結果可知,血小板生成及淋巴球的分化不需TXA2合成酶的參與,缺乏TXA2合成酶會有輕微的凝血缺陷,然而對花生四烯酸的刺激較無反應,且不易產生休克及死亡。TXS-/-小鼠模式將是研究與TXA2及花生四烯酸代謝相關病理現象的良好素材。zh_TW
dc.description.abstractThromboxane A2 (TXA2) has potent actions on platelet aggregation, vasoconstriction, as well as regulating renal hemodynamics. It plays a role in the pathogenesis of a number of disease states including myocardial infarction, thrombotic stroke, bronchial asthma and a variety of renal diseases. Besides its well-recognized role in hemostasis and thrombosis, thromboxane A2 synthase (TXAS) is proposed to be involved in thrombopoiesis and lymphocyte differentiation. To evaluate its various physiological roles, TXAS-deleted mice was generated by gene targeting. TXAS-/- mice had normal bone marrow megakaryocytes, blood platelet counts, and normal CD4 and CD8 lymphocyte counts in thymus and spleen. Platelets from TXAS-/- mice failed to aggregate or generate thromboxane B2 in response to arachidonic acid (AA) but produced increased PGE2, PGD2 and PGF2α. AA infusion caused a progressive drop of mean arterial pressure (MAP), cardiac arrest and death in WT mice, but did not induce shock in TXAS-/- mice, nor in WT and TXAS-/- mice treated with antagonist to the TP receptor. The TXAS-/- mice were able to maintain normal MAP upon AA insult when TP was present but were unable to do so when TP was blocked by an antagonist, suggesting a role of endoperoxide accumulation in influencing MAP. We also found that TXAS deletion can influence 15-HETE and LTB4 production from lipoxygenase pathway, suggested that TXA2 may regulate inflammatory mediator formation. We conclude that TXAS is not essential for thrombopoiesis and lymphocyte differentiation. Its deficiency causes a mild hemostatic defect and protects mice against arachidonate-induced shock and death. The TXAS-deleted mice will be valuable for investigating the roles of arachidonate metabolic shunt in various pathophysiological processes.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:55:44Z (GMT). No. of bitstreams: 1
ntu-94-D91424002-1.pdf: 7573765 bytes, checksum: 2eb1ae56f7a19c368e56b9ce7e426871 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents摘要 ------------------------------------------------ 1
Abstract ----------------------------------------------- 2
目錄 ----------------------------------------------- 3
圖目錄 ----------------------------------------------- 6
表目錄 ----------------------------------------------- 8
附錄目錄 ---------------------------------------------- 9
縮寫表 ----------------------------------------------- 10
第一章 導論 -------------------------------------- 12
1.1 本章概要 ------------------------------------- 12
1.2 前列腺素的(prostaglandin)早期研究 -------------- 12
1.3 Thromboxane A2 (TXA2)的生成 ------------------- 14
1.4 TXA2的生理功能 ---------------------------- 14
1.5 Thromboxane A2合成酶(TXAS)的分子及生理功能 ------ 15
1.6 TXA2合成酶基因互補DNA的選殖及其重要的氨基酸位置--- 16
1.7 TXA2合成酶的基因結構及多型性對偶基因(allele) ------17
1.8 TXA2合成酶的表現 ---------------------------- 18
1.9 TXA2的受體及基因剔除鼠的相關研究 ---------- 18
1.10 尚待研究的部分及引發本論文的動機 ---------- 19
第二章 TXA2合成酶基因剔除鼠的製造 ------------------- 21
2.1 本章概要 ------------------------------------- 21
2.2 材料與方法 ------------------------------------- 21
2.2.1 小鼠TXA2合成酶genomic DNA基因庫的篩選及基因剔除
載體的構築 ------------------------------------- 21
2.2.2 胚胎幹細胞的培養,轉染及基因剔除胚胎幹細胞的選殖- 22
2.2.3 胚胎幹細胞DNA的製備及南方墨點法 --------- 23
2.2.4 囊胚期細胞注射及嵌合鼠的育種及剔除鼠的基因型鑑定-- 23
2.2.5 反轉錄聚合酶鏈反應(RT-PCR) 及北方墨點法 --------- 24
2.3 結果 ---------------------------------------------- 25
2.3.1 小鼠胚胎幹細胞TXAS基因剔除 ------------------- 25
2.3.2 TXAS-/-小鼠的製造 --- ------------------------ 25
2.4 討論 ---------------------------------------------- 26
2.5 本章結論 ------------------------------------- 27
第三章 TXAS基因剔除鼠的生理及病理分析 ---------- 28
3.1 本章概要 ---------------------------- 28
3.2 材料與方法 ------------------------------------- 28
3.2.1 全血計數,生化分析及病理切片分析 ---------- 28
3.2.2 血小板的電子顯微鏡分析 ------------------- 29
3.2.3 流式細胞儀分析 ---------------------------- 29
3.2.4 出血時間的測量 ---------------------------- 29
3.2.5 血小板凝集及釋放能力分析 ------------------- 30
3.2.6 花生四烯酸(Arachidonic acid)的代謝分析 ---------- 31
3.2.7 小鼠血壓的量測及花生四烯酸引發休克模型 ---------- 31
3.2.8 花生四烯酸代謝產物的測量 -------------------------32
3.2.9 Lipooxygenase代謝路徑相關酵素的RT –PCR分析 ---- 32
3.3結果 ---------------------------------------------- 32
3.3.1 TXAS缺乏不會影響血液中血球組成及血漿中的生化成分-- 32
3.3.2 TXAS缺乏不會影響小鼠主要器官的型態 --------- 33
3.3.3 TXAS缺乏不會影響血小板的生成 ------------------ 33
3.3.4 TXAS缺乏不會影響脾臟及胸腺免疫細胞的組成 ------ 33
3.3.5 TXAS-/-小鼠凝血時間延長且血小板凝集功能異常------ 34
3.3.6 TXAS缺乏的血小板無法代謝AA產生TXA2,且其他產物有
代償性增加的現象 ---------------------------- 35
3.3.7 TXAS缺乏對正常時血壓無影響,但對AA引發的休克反
應具有保護作用 ---------------------------- 35
3.3.8 TXAS缺乏影響AA經lipooxygenase路徑的代謝---------- 36
3.4 討論 ---------------------------------------------- 37
3.5 本章結論 ----------------------------------------- 41
第四章 總結與展望 ----------------------------------- 43
附圖 ---------------------------------------------- 44
附表 ---------------------------------------------- 71
參考文獻 ---------------------------------------------- 77
已發表或投稿之相關論文 ---------------------------- 86
附錄 ------------------------------------------------ 94
dc.language.isozh-TW
dc.subjectThromboxane A2合成&#37238zh_TW
dc.subject花生四烯酸zh_TW
dc.subject基因剔除zh_TW
dc.subjectthromboxane A2en
dc.subjectrachidonic aciden
dc.subjectnockouten
dc.titleThromboxane A2合成酶剔除鼠功能研究zh_TW
dc.titleInvestigation of thromboxane A2 synthase knockout miceen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee李君男,鐘邦柱,吳華林,陶秘華,蔡亭芬,江福田
dc.subject.keyword花生四烯酸,基因剔除,Thromboxane A2合成&#37238,zh_TW
dc.subject.keywordthromboxane A2,nockout,rachidonic acid,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2005-06-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫事技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
7.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved