請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38981
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
dc.contributor.author | Shiou-Ping Lee | en |
dc.contributor.author | 李秀萍 | zh_TW |
dc.date.accessioned | 2021-06-13T16:55:37Z | - |
dc.date.available | 2005-07-04 | |
dc.date.copyright | 2005-07-04 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-06-07 | |
dc.identifier.citation | 1. Ching-Po Lin, Wen-Yih Isaac Tseng, Hui-Cheng Cheng, and Jyh-Horng Chen. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered Manganese enhanced optic tracts. NeuroImage 14[5], 1035-1047. 2001.
2. Kenshi Terajima and Tsutomu Nakada. EZ-tracing: a new ready-to-use algorithm for magnetic resonance tractography. Journal of Neuroscience Methods 16[2], 147-155. 2002. 3. Dongrong Xu, Susumu Mori, Meiyappan Solaiyappan, Peter C. M. van Zijl, and Christos Davatzikos. A Framework for Callosal Fiber Distribution Analysis. NeuoImage 17[3], 1131-1143. 2002. 4. D. K. Jones. The Effect of Gradient Sampling Scheme on Estimates of Fiber Orientation: Implications for Fiber Tractography. Magn Reson Med 72. 2003. 5. 鄧木火,磁共振造影與核磁共振原理,華榮出版社,第二頁。 6. Carr, H. Y. and Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Journal of Chemical Physics 94[3], 630-638. 1954. 7. Bloch, F. Nuclear induction. Physical Review 70, 460-474. 1946. 8. Torrey, H. C. Bloch equations with diffusion terms. Journal of Chemical Physics 104[3], 563-565. 1956. 9. Le Bihan, D. and Basser, P. J. Molecular diffusion and nuclear magnetic resonance. Diffusion and perfusion magnetic resonance imaging: applications to functional MRI. New York: Raven Press, Ltd. 5-17. 1995. 10. Stejskal, E. O. and Tanner, J. E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics 42[1], 288-292. 1965. 11. Wesbey, G. E., Moseley, M. E., and Ehman, R. L. Translational molecular self-diffusion in magnetic resonance imaging. I. Effects on observed spin-spin relaxation. Invest Radiol 19[6], 484-490. 1984. 12. Wesbey, G. E., Moseley, M. E., and Ehman, R. L. Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol 19[6], 491-498. 1984. 13. Merboldt, K. D., Hanicke, W., and Frahm, J. Self-diffusion NMR imaging using stimulated echoes. Journal of Magnetic Resonance 64, 479-486. 1985. 14. Le Bihan, D. and Breton, E. Imagerie de diffusion in vivo par resonance magnetique nucleaire. CR Acad Sci Paris 301, 1109-1112. 1985. 15. Taylor, D. G. and Bushell, M. C. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 30[4], 345-349. 1985. 16. Le Bihan, D. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161[2], 401-407. 1986. 17. Warach, S., Chien, D., Li, W., Ronthal, M., and Edelman, R. R. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42[9], 1717-1723. 1992. 18. Moseley, M. E. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magnetic Resonance in Medicine 14[2], 330-346. 1990. 19. Murphy, J. and Doane, J. An NMR measurement of the diffusion anisotropy in a nematic liquid crystals. Molecular Crystal and Liquid Crystal 13, 93-95. 1971. 20. Kruger, G. and Spiescke, H. Anisotropy of the diffusion coefficient in nematic liquid solutions measured by NMR techniques. Zeitschrift fur Naturforschung A (Astriphysik, physik und Physikalische Chemie) 28, 964-967. 1973. 21. Ukleja, P. and Doane, J. The anisotropy of self-diffusion in the lamellar phase (using NMR) Ordering in Two Dimensions. Lake Geneva, WI, USA . 1980. 22. Callaghan, P. T., LeGros, M., and Pinder, D. The measurement of diffusion using deurerium pulsed field gradient nuclear magnetic resonance. Journal of Chemical Physics 79, 6372-6381. 1983. 23. Cleveland, G. G., Chang, D. C., Hazlewood, C. F., and Rorschach, H. E. Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. Biophys J 16[9], 1043-1053. 1976. 24. Moseley, M. E. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176[2], 439-445. 1990. 25. Chenevert, T. L., Brunberg, J. A., and Pipe, J. G. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177[2], 401-405. 1990. 26. Turner, R. Echo-planar imaging of intravoxel incoherent motion. Radiology 177[2], 407-414. 1990. 27. Rutherford, M. A. MR imaging of anisotropically restricted diffusion in the brain of neonates and infants. J Comput Assist Tomogr 15[2], 188-198. 1991. 28. Sakuma, H. Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 180[1], 229-233. 1991. 29. Douek, P., Turner, R., Pekar, J., Patronas, N., and Le Bihan, D. MR color mapping of myelin fiber orientation. J Comput Assist Tomogr 15[6], 923-929. 1991. 30. Basser, P. J., Mattiello, J., Turner, R., and Le Bihan, D. Diffusion tensor echo-planar imaging of human brain. in Proceedings of the SMRM , 584. 1993. 31. Basser, P. J., Mattiello, J., and Le Bihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103[3], 247-254. 1994. 32. Basser, P. J., Mattiello, J., and Le Bihan, D. MR diffusion tensor spectroscopy and imaging. Biophys J 66[1], 259-267. 1996. 33. Le Bihan, D. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13[4], 534-546. 2001. 34. Peter J.Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi. In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44[4], 625-632. 2000. 35. Rong Xue, Peter C.M.van Zijl, Barbara J.Crain, Meiyappan Solaiyappan, and Susumu Mori. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magnetic Resonance in Medicine 42[6], 1123-1127. 1999. 36. Susumu Mori, Barbara J.Crain, V.P.Chacko, and Peter C.M.van Zijl. Three-dimensional tracking of axonal projection in the brain by magnetic resonance imaging. Ann Neurol 45[2], 265-269. 1999. 37. Thomas E.Conturo, Nicolas F.Lori, Thomas S.Cull, Erbil Akbudak, Abraham Z.Snyder, Joshua S.Shimony, Robert C.McKinstry, Harold Burton, and Marcus E.Raichle. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96[18], 10422-10427. 1999. 38. Derek K.Jones, Andrew Simmons, Steve C.R.Williams, and Mark A.Horsfield. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magnetic Resonance in Medicine 42[1], 37-41. 1999. 39. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., and Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 201[3], 637-648. 1996. 40. Werring, D. J. The structural and functional mechanisms of motor recovery: complementary use of diffusion tensor and functional magnetic resonance imaging in a traumatic injury of the internal capsule. J Neurol Neurosurg Psychiatry 65[6], 863-869. 1998. 41. Virta, A., Barnett, A., and Pierpaoli, C. Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging 17[8], 1121-1133. 1999. 42. Wiegell, M. R., Larsson, H. B., and Wedeen, V. J. Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 217[3], 897-903. 2000. 43. Mattiello, J., Basser, P. J., and Le Bihan, D. The b matrix in diffusion tensor echo-planar imaging. Magnetic Resonance in Medicine 37[2], 292-300. 1997. 44. Bastin, M. E. Correction of Eddy Current-Induced Artefacts in Diffusion Tensor Imaging Using Iterative Cross-Correlation. Magnetic Resonance Imaging 17[7], 1011-1024. 1999. 45. Calamante, F., Porter, D. A., Gadian, D. G., and Connelly, A. Correction for eddy current induced Bo shifts in diffusion-weighted echo-planar imaging. Magnetic Resonance in Medicine 41[1], 95-102. 1999. 46. Porter, D. A., Calamante, F., Gadian, D. G., and Connelly, A. The effect of residual Nyquist ghost in quantitative echo-planar diffusion imaging. Magnetic Resonance in Medicine 42[2], 385-392. 1999. 47. Papadakis, N. G., Xing, D., Huang, C. L., Hall, L. D., and Carpenter, T. A. A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson 137[1], 67-82. 1999. 48. Bastin, M. E., Armitage, P. A., and Marshall, I. A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Magn Reson Imaging 16[7], 773-785. 1998. 49. Basser, P. J. and Pajevic, S. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magnetic Resonance in Medicine 44[1], 41-50. 2000. 50. Martin, K. M., Papadakis, N. G., Huang, C. L., Hall, L. D., and Carpenter, T. A. The reduction of the sorting bias in the eigenvalues of the diffusion tensor. Magn Reson Imaging 17[6], 893-901. 1999. 51. Pierpaoli, C. and Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine 36[6], 893-906. 1996. 52. Tuch, D. S., Weisskoff, R. M., Belliveau, J. W., and Wedeen, V. J. High angular resolution diffusion imaging of the human brain. in Proceedings of ISMRM 8th Ann Meeting, Peiladelphia, USA , 321. 1999. 53. Tuch, D. S., Belliveau, J. W., and Wedeen, V. J. Probabilistic tractography using high angular resolution diffusion imaging (abstr). in Proceedings of ISMRM 9th Ann Meeting . 2000. 54. Poupon, C. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12[2], 184-195. 2000. 55. Wedeen, V. J. Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. in Proceedings of ISMRM 9th Ann Meeting, Denvor, USA , 82. 2000. 56. Paul T.Callaghan. Principles of nuclear magnetic resonance microscopy. Oxford: Clarendon Press . 1991. 57. Callaghan, P. T., Eccles, C. D., and Xia, Y. NMR microscopy displacements: k-space and q-space imaging. Journal of Physics E 21, 820. 1988. 58. C-P. Lin, Van J. Wedeen, C.Yao, J-H. Chen, W-Y.I. Tseng. Validation of Diffusion Spectrum Magnetic Resonance Imaging with Registered Manganese-enhanced Optic Tracks and Phantom. in Proceeding of ISMRM 10th Ann Meeting, Hawaii, USA.2002. 59. Rong Xue, Peter C.M.van Zijl, Barbara J.Crain, Meiyappan Solaiyappan, and Susumu Mori. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magnetic Resonance in Medicine 42[6], 1123-1127. 1999. 60. R.Xue, P.C.M.van Zijl, and S.Mori. In vivo 3D fiber reconstruction in the rat brain using rapid diffusion tensor imaging. ISMRM . 2000. 61. S.Mori, R.Xue, B.Crain, M.Solaiyappan, V.P.Chacko, and P.C.M.van Zijl. 3D reconstruction of axonal fibers from diffusion tensor imaging using fiber assignment by continuous tracking (FACT). ISMRM . 2000. 62. Bram Stieltjes, Walter E.Kaufmann, Peter C.M.van Zijl, Kim Fredericksen, Godfrey D.Pearlson, Meiyappan Solaiyappan, and Susumu Mori. Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage 14, 1-13. 2001. 63. Thomas E.Conturo, Nicolas F.Lori, Thomas S.Cull, Erbil Akbudak, Abraham Z.Snyder, Joshua S.Shimony, Robert C.McKinstry, Harold Burton, and Marcus E.Raichle. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96[18], 10422-10427. 1999. 64. Peter J.Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi. In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44[4], 625-632. 2000. 65. 翁駿程,'以擴散磁振造影技術決定顯微結構尺寸與方向之研究'之論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38981 | - |
dc.description.abstract | 近年來磁振造影(Diffusion MRI)技術的成熟發展,帶領人類揭開在神經科學研究中相當古老且深遠的議題,而人類大腦的神秘面紗終得以慢慢地被解開。其中擴散張量磁振造影(DTI),因以非侵入方式之醫學臨床診斷造影,探測大腦內白質神經纖維結構之神經傳遞,利用此技術所提供之擴散主要方向,能夠連續追蹤水份子傳遞方向,而實際預測可能神經纖維方向,再利用Tractography技術重建神經纖維路徑,此話題是目前受到相當重視之熱門課題之一。
目前國際上著名研究腦功能科學發展單位,陸續發表Tractography演算法相關論文及發展應用工具,無非希望帶給人類較不同以往對大腦複雜神經結構一種理性客觀認識與判定。於是,亦提出Tractography區域性顯微結構演算法,為Selective Distance-Weighted Interpolation(SDWI),主要概念基於高相似度、距離為權重內插方法而來,以選擇周圍最佳能量場,當做其前進之最有效方向,成功找到大腦內主要之白質神經纖維束圖像,更將以(2D phantom)成束管狀假體,驗証其顯微結構追踨演算法之可信度。 在廣泛Tractography技術應用在腦神經科學發展與臨床疾病診斷治療上,佔有與日俱增之極俱重要角色,所以受到相當大的關注與相關應用議題之深入解析資訊,於是我們提出一個嶄新量化公式,Tractography相似度指標(coherence index),說明最佳(MR-DTI)擴散脈衝梯度數目與Tractography追踨纖維結構走向正確度之相關性,對於現今傳統Tractography技術未被證實發展研究中,提供一項舉足輕重之臨床最佳實驗參考數據。 | zh_TW |
dc.description.abstract | Recently, the technique of Diffusion Magnetic Resonance Imaging (Diffusion MRI) has developed to make progress in explaining perpetual controversy about neuroscience in human brain. Diffusion Tensor magnetic resonance Imaging (DTI) has been recognized as an important tool to reveal the axonal fiber tracts in cerebral white matter noninvasively in the clinical diagnosis image. By probing the translational displacement of water molecules, it provides the primary direction of water molecular diffusion which is correlated to the main pathway of fiber bundles. The eigenvector of the diffusion tensor at each location in the cerebral white matter represents the fiber orientation at the same location. Based on this information, 3D reconstruction and visualization of white matter fiber pathways can be produced by tractography.
The last, MR-DTI has achieved a reasonable cognition and judgement, making a difference from the past acquisition strategies for complicated structure of white matter bundles. International eminent functional brain science research center has investigated related lectures for tractography algorithm and available tools, and we also proposed a novel fiber tracking algorithm. It extracted salient tensor feature using a local regularization theory that represented SDWI method. By using a phantom image made up of PE fibers with known fiber pathways to validate stability of this algorithm. Extensive attention and profound analysis has been given to recover identifiable anatomical structures that correspond to fiber tracjectories, and the position of brain lesions in vast Tractography innovation has played more important role. We has derived from Tractography quantitative index a formula that determines the correlation between optimum diffusion tensor encoding steps and white matter tractography. Its dominant strategy has not been proven by the traditional Tractography research and related application in the clinical experiment parameter. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:55:37Z (GMT). No. of bitstreams: 1 ntu-94-R90548010-1.pdf: 1067038 bytes, checksum: 6740461572facacba18b9a36ac63d049 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要
英文摘要 誌謝 目錄 圖目錄 第一章 緒論 1.1 研究動機 1 1.2 研究主題 3 1.3 論文架構 4 第二章 擴散磁振造影概述 2.1 擴散磁振造影 5 2.1.1擴散磁振造影之發展簡史 5 2.1.2 NMR脈衝擴散梯度 8 2.2 擴散張量磁振造影原 10 2.2.1 MR-DTI 之原理 10 2.2.2 MR-DTI 之應用 11 第三 章顯微結構追蹤演算法之文獻探討 3.1 追蹤演算法之發展趨勢 12 第四章 區域性顯微結構追蹤演算法 4.1 追蹤演算法之發展過程 17 4.1.1 Fiber-Trackingv1.2追踨演算法之軟體 17 4.1.2 Ez-tracing追踨演算法之軟體 21 4.1.3 Streamline 追踨演算法之Matlab 內鍵函數 25 4.2 區域性顯微結構追蹤演算法之發展步驟 28 4.2.1 區域性顯微結構追踨演算法之想法 28 4.2.2區域性顯微結構追踨演算法之實驗參數 30 4.2.3區域性顯微結構追踨演算法之結果 30 4.2.4區域性顯微結構追踨演算法之驗證問題 32 第五章 最佳擴散張量梯度數目之研究探討 5.1 Tractography技術之應用發展過程 34 5.2 Tractography技術之量化指標 35 5.3 Tractography技術之相似度指標相關實驗參數 36 5.4 Tractography技術之量化指標結果 36 第六章 結論與未來展望 6.1 結論 39 6.2 未來展望 40 參考文獻 | |
dc.language.iso | zh-TW | |
dc.title | 利用相似度決定白質神經纖維束成像之最佳擴散張量梯度數目 | zh_TW |
dc.title | Using Coherence Index to Determine the Optimum Diffusion Tensor Encoding Steps for White Matter Tractography | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 曾文毅(Wen-Yih Isaac Tseng) | |
dc.contributor.oralexamcommittee | 朱唯勤(Woei-Chyn Chu) | |
dc.subject.keyword | 方法 相似度指標,擴散張量 神經追踨, | zh_TW |
dc.subject.keyword | diffusion tensor Tractography coherence index, | en |
dc.relation.page | 46 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-06-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。