請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38917
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳炳煇 | |
dc.contributor.author | Hao-Hsiu Huang | en |
dc.contributor.author | 黃皓修 | zh_TW |
dc.date.accessioned | 2021-06-13T16:52:22Z | - |
dc.date.available | 2016-07-26 | |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-15 | |
dc.identifier.citation | [1] L. Carrette, K. A. Friedrich and U. Stimming, 'Fuel Cells: Principles, Types, Fuels, and Applications,' Chemphyschem, vol. 1, pp. 162-193, 2000.
[2] C. K. Dyer, 'Fuel cells for portable applications,' Fuel Cells Bulletin, vol. 2002, pp. 8-9, 2002. [3] http://physics.nist.gov/MajResFac/NIF/pemFuelCells.html. [4] J. J. Huang, 'Fuel cell,' Chuan Hwa Publishing Ltd., Taipei, Taiwan (R.O.C.), 2004. [5] H. Nishikawa, R. Kurihara, S. Sukemori, 'Measurements of humidity and current distribution in a PEFC,' Journal of Power Sources, vol. 155, pp. 213-218, 2006. [6] Y.S. Chen, H. Peng, D.S. Hussey, D.L. Jacobson, D.T. Tran, T. Abdel-Baset and M. Biernacki, 'Water distribution measurement for a PEMFC through neutron radiography,' Journal of Power Sources, vol. 170, pp. 376-386, 2007. [7] C.Y. Lee, G.W. Wu and C.L. Hsieh, 'In situ diagnosis of micrometallic proton exchange membrane fuel cells using microsensors,' Journal of Power Sources, vol. 172, pp. 363-367, 2007. [8] P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M.K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennett and M.B. Sullivan, 'Ultra barrier flexible substrates for flat panel displays,' Displays, vol. 22, pp. 65-69, 2001. [9] P. Abgrall, C. Lattes, V. Con´ed´era, X. Dollat, S. Colin and A.M. Gu´e, ' A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films, ' Journal of Micromechanics and Microengineering, vol.16, pp. 113–121, 2006. [10] N. Bu, J. Tsukamoto, N. Ueno, K. Shima and T. Tsuji, 'Measuring muscle movements for human interfaces using a flexible piezoelectric thin film sensor,' IEEE EMBS Conference, pp. 112-116, 2008. [11] K.C. Cheung, P. Renaud, H. Tanila and K. Djupsund, 'Flexible polyimide microelectrode array for in vivo recordings and current source density analysis,' Biosensors and Bioelectronics, vol. 22, pp. 1783-1790, 2007. [12] C.L. Chen, S. Selvarasah, S.H. Chao, A. Khanicheh, C. Mavroidis and M.R. Dokmeci, 'An Electrohydrodynamic Micropump for On-Chip Fluid Pumping on a Flexible Parylene Substrate,' IEEE Nano/Micro Engineered and Molecular Systems Conference, pp. 826-829, 2007. [13] D.C. Rodger, W.Li, H. Ameri, A. Ray, J.D. Weiland, M.S. Humayun and Y.C. Tai, 'Flexible Parylene-based Microelectrode Technology for Intraocular Retinal Prostheses,' IEEE Nano/Micro Engineered and Molecular Systems International Conference, pp. 743-746, 2006. [14] Z.M. Rittersma, 'Recent achievements in miniaturised humidity sensors--a review of transduction techniques,' Sensors and Actuators A: Physical, vol. 96, pp. 196-210, 2002. [15] A. Glück, W. Halder, G. Lindner, H. Müller and P. Weindler, 'PVDF-excited resonance sensors for gas flow and humidity measurements,' Sensors and Actuators B: Chemical, vol. 19, pp. 554-557, 1994. [16] S. Muto, O. Suzuki, T. Amano and M. Morisawa, 'A plastic optical fibre sensor for real-time humidity monitoring,' Measurement Science and Technology, vol.14, pp. 746–750, 2003. [17] Y. Sakai, M. Matsuguchi and N. Yonesato, 'Humidity sensor based on alkali salts of poly(2-acrylamido-2-methylpropane sulfonic acid),' Electrochimica Acta, vol. 46, pp. 1509-1514, 2001. [18] Y.Y. Qiu, C. Azeredo-Leme, L.R. Alcácer and J.E. Franca, 'A CMOS humidity sensor with on-chip calibration,' Sensors and Actuators A: Physical, vol. 92, pp. 80-87, 2001. [19] R.M. White and F.M. Voltmer, 'Direct piezoelectric coupling to surface elastic waves,' Applied Physics Letters, vol. 7, pp.314-316, 1965. [20] L.M. Reindl and I.M. Shrena, 'Wireless measurement of temperature using surface acoustic waves sensors,' IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 51, pp. 1457-1463, 2004. [21] B.C. Lee, Y.G. Lim, K.H. Kim, S. Lee and S. Moon, 'Microfabricated neural thermocouple arrays probe for brain research,' Solid-State Sensors, Actuators and Microsystems Conference, pp. 338-341, 2009. [22] A. Rajagopal, S. Walavalkar, S. Chen, L. Guo, T. Gwinn, and A. Scherer, 'Microscaled and nanoscaled platinum sensors,' Applied Physics Letters, vol. 97, pp. 109-133, 2010. [23] S.S. Chawathe, V. Krishnamurthy, S. Ramachandran and S. Sarma, 'Managing RFID data,' In Proceedings of VLDB Conference, pp. 1189-1195, 2004. [24] M.A. Khan, M. Sharma, B. Prabhu, 'A Survey of RFID Tags,' International Journal of Recent Trends in Engineering, vol. 1, pp. 68-71, 2009. [25] A. Janek, C. Steger, R. Weiss, J.P. Pfluegl, and M. Pistauer, 'Lifetime extension of semi-passive UHF RFID tags using special power management techniques and energy harvesting devices,' IEEE Africon Conference, pp. 1-7, 2007. [26] http://nscmems.iam.ntu.edu.tw/NEMS-2008/index.php?option=com_content& view=article&id=67&Itemid=84 [27] http://mems.ie.ntnu.edu.tw/picture_main.php?t=19 [28] http://mems.ie.ntnu.edu.tw/picture_show.php?p=30&t=5 [29] Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee and H. Park, 'Capacitive humidity sensor design based on anodic aluminum oxide,' Sensors and Actuators B: Chemical, vol. 141, pp. 441-446, 2009. [30] G.W. Wu, W.J. Hsieh and C.Y. Lee, 'Fabrication of micro sensors on a flexible substrate,' Sensors and Actuators A: Physical, vol. 147, pp. 173-176, 2008. [31] E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato and A. Bearzotti, 'Design and optimization of an ultra thin flexible capacitive humidity sensor,' Sensors and Actuators B: Chemical, vol. 143, pp. 302-307, 2009. [32] J.S. Kim, K.Y. Kwak, K.H. Kwon, N.K. Min, M.S. Kang, 'A locally cured polyimide-based humidity sensor with high sensitivity and high speed,' IEEE Sensors Conference, pp. 434-437, 2008. [33] C. Laville and C. Pellet, 'Interdigitated humidity sensors for a portable clinical microsystem,' IEEE Transactions on Biomedical Engineering, vol. 49, pp. 1162-1167, 2002. [34] J.S. Wilson, “Sensor technology handbook,” Butterworth-Heinemann, Boston, America, 2004. [35] S. Xiao, L. Che, X. Li and Y. Wang, 'A cost-effective flexible MEMS technique for temperature sensing,' Microelectronics Journal, vol. 38, pp. 360-364, 2007. [36] W.P. Shih, L.C. Tsao, C.W. Lee, M.Y. Cheng, C. Chang, Y.J. Yang and K.C. Fan, 'Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite,' Sensors, vol. 10, pp. 3597-3610, 2010. [37] Innovative Sensor Technology. Available:www.ist-ag.ch. [38] C.Y. Lee, W.J. Hsieh and G.W. Wu, 'Embedded flexible microsensors in MEA for measuring temperature and humidity in a micro-fuel cell,' Journal of Power Sources, vol. 181, pp. 237-243, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38917 | - |
dc.description.abstract | 在質子交換膜燃料電池(proton exchange membrane fuel cell)中,由於流道上的積水對電池性能的影響具有關鍵性因素,故在內部做溫濕度檢測對於燃料電池相當地重要。一般傳統市售的溫濕度感測器相較於燃料電池而言,體積過於龐大導致無法嵌入於電池內部,在流道上做溫濕度監測的動作。因此,本研究之目的在開發薄型、可撓式微型溫濕度感測元件並整合一無線射頻模組(RF module)應用於質子交換膜燃料電池的內部溫濕度檢測,實現量測的可行性與方便性。
本研架構主要分為四大部份:1.電容式濕度感測器製作。2.電阻式溫度感測器製作。3.無線射頻模組之整合。4.流道上溫濕度的即時監測。感測元件採用微機電製程(micro electromechanical system)的方式分別製作微型溫濕度感測器,其元件採用聚對二甲苯(parylene)作為可撓性基材。製作完成後微型濕度感測元件的靈敏度為0.83pF/%RH,溫度感測器的靈敏度為2.94×〖10〗^(-3) ℃^(-1)。在成功開發可撓式微型感測元件後,將其整合於無線模組,並透過433Mhz的載波把訊號傳送到接收器處,經由測試,此無線感測系統的反應時間低於0.25秒,訊號傳送最大距離為4公尺。最後,在燃料電池內部溫濕度觀測部分,把感測元件埋置於流道上並將電池做組裝,即時監測在穩定電壓中的燃料電池內部溫濕度狀態。在燃料電池內部有、無微型感測器的性能比較上,無微型感測器的電池最大功率為15.9 mW•cm^(-2),而有感測元件的電池最大功率為14.76 mW•cm^(-2),其性能共降低7.17%。 | zh_TW |
dc.description.abstract | Flooding at flow channels has an influential impact on the performance of PEM (proton exchange membrane) fuel cell. As a result, local humidity and temperature measurement at flow channels is greatly important. However, the size of conventional humidity and temperature meter is too large to be embedded into a fuel cell. Due to the reason, the content of this research is to establish an integrated thin, flexible micro humidity and temperature sensor with a wireless module for achieving the feasibility and the convenience of measurement within fuel cells.
This study aims to develop a portable, non-intrusive and in-situ wireless sensing system for fuel cells. The system consists of three parts: a flexible capacitive humidity sensor, a resistive temperature sensor, and a RF module for signal transmission. The results shows that the capacitive humidity sensor has a high sensitivity of 0.83pF/%RH and the resistive temperature sensor also exhibits a high sensitivity of 2.94×〖10〗^(-3) ℃^(-1). The established RF module can transmit the signals from the two sensors to any location up to 4 m with the responding time less than 0.25sec. In the cell performance comparison, the performance measurements demonstrate that the maximum power density of the fuel cell without and with the sensors are 15.90 mW•cm^(-2) and 14.76 mW•cm^(-2), with only 7.17% power loss. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:52:22Z (GMT). No. of bitstreams: 1 ntu-100-R98522115-1.pdf: 8506123 bytes, checksum: 8097ec78f14c08344f22bc9ce5fa5357 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Chapter 1 Introduction..................................1
1.1 Motivation..........................................1 1.2 Literature review...................................3 1.2.1 Methods of making flooding diagnosis within PEM fuel cell....................................................3 1.2.2 Flexible substrate................................4 1.2.3 MEMS humidity sensor..............................6 1.2.4 MEMS temperature sensor...........................9 1.2.5 RFID classfication................................11 1.3 Aims and ambition...................................13 Chapter 2 Experimental method...........................26 2.1 Sensor design.......................................26 2.2 Fabrication of micro capacitive humidity sensor.....27 2.3 Fabrication of micro resistive temperature sensor...31 2.4 RF module integration...............................33 2.5 PEM fuel cell measurement setup.....................38 Chapter 3 Results and discussion........................59 3.1 Sensor and wireless integration calibration.........59 3.2 Fuel cell performance...............................62 3.3 Diagnosis within fuel cell..........................63 Chapter 4 Conclusion....................................75 References..............................................77 | |
dc.language.iso | en | |
dc.title | 可撓式RF感測器應用於PEM燃料電池內部溫濕度檢測 | zh_TW |
dc.title | Application of flexible RF sensors for humidity and temperature measurements within PEM fuel cell | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 苗志銘,李達生,楊安石 | |
dc.subject.keyword | 微濕度感測元件,微溫度感測元件,無線射頻模組,內部溫濕度監測, | zh_TW |
dc.subject.keyword | micro humidity sensor,micro temperature sensor,RF module,measurement within fuel cells, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 8.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。