請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38895完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏嗣鈞 | |
| dc.contributor.author | Pin-Han Chen | en |
| dc.contributor.author | 陳品翰 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:51:14Z | - |
| dc.date.available | 2016-07-26 | |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-15 | |
| dc.identifier.citation | [1] F. Althoff, R. Lindl, and L. Walchshaeusl, “Robust multimodal hand- and head gesture recognition for controlling automotive infotainment systems,” In VDI-Tagung: Der Fahrer im 21. Jahrhundert, Braunschweig, Germany, 2005, pp. 187-205.
[2] W.T. Freeman and M.Roth, “Orientation histograms for hand gesture recognition,” Proceedings of International Workshop on Automatic Face and Gesture Recognition, 1995, vol. 12, pp. 296-301. [3] A. Just, Y. Rodriguez, and S. Marcel, “Hand posture classification and recognition using the modified census transform,” Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, 2006, pp. 351-356. [4] X. Liu and K. Fujimura, “Hand gesture recognition using depth data,” Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, pp. 529-534. [5] L. Bretzner, I. Laptev, and T. Lindeberg, “Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering,” Proceedings of International Conference on Automatic Face and Gesture Recognition, 2002, vol. 423, pp. 423-428. [6] C. Cao and R. Li, “Real-time hand posture recognition using haar-like and topological feature,” International Conference on Machine Vision and Human-machine Interface, 2010, pp. 683-687. [7] Q. Chen, N. Georganas, and E. Petriu, “Hand gesture recognition using haar-like features and a stochastic context-free grammar,” IEEE Transactions on Instrumentation and Measurement, vol. 57, 2008, pp. 1562-1571. [8] P. Viola and M.J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, May. 2004, pp. 137-154. [9] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object detection,” Proc. IEEE Int’l Conf. Image Processing, vol. 1, Sep. 2002, pp. 900-903. [10] C. Wang and K. Wang, “Hand posture recognition using adaboost with SIFT for human robot interaction,” Recent Progress in Robotics: Viable Robotic Service to Human, 2009, pp. 317-329. [11] “AdaBoost - wikipedia, the free encyclopedia,” http://en.wikipedia.org/wiki/AdaBoost, 2011. [12] P. Kakumanua, S. Makrogiannisa, and N. Bourbakis, “A survey of skin-color modeling and detection methods,” Pattern Recognition, vol. 40, no. 3, Mar. 2007, pp. 1106-1122. [13] R. Chellappa, C. Wilson, and S. Sirohey, “Human and machine recognition of faces: a survey,” Proc. IEEE, vol. 83, no. 5, 1995, pp.705-740. [14] E. Hjelmas and B. Low, “Face detection: a survey,” Computer Vision and Image Understanding, vol. 83, no. 3, 2001, pp. 236-274. [15] M.H. Yang, D. Kriegman, and N. Ahuja, “Detecting faces in images: a survey,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 1, 2002, pp. 34-58. [16] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: a literature survey,” ACM Comput. Surv., vol. 35, no. 4, 2003, pp. 399-458. [17] N. Oliver, A. Pentland, and F. Berard, “LAFTER: Lips and face real time tracker with facial expression recognition,” In IEEE Conference on Computer Vision and Pattern Recognition, 1997, pp. 123-129. [18] J. Yang, W. Lu, and A. Wibel, “Skin-color modeling and adaptation,” Proceedings of ACCV 1998, 1998, pp. 687-694. [19] K. Schwerdt and J.L. Crowley, “Robust face tracking using color,” IEEE International Conference on Automatic Face and Gesture Recognition, 2000, pp. 90-95. [20] M. Soriano, S. Huovinen, B. Martinkauppi, and M. Laaksonen, “Skin detection in video under changing illumination conditions,” in Proc. 15th International Conference on Pattern Recognition, Barcelona, Spain, 2000, pp. 839-842. [21] Y. Raja, S.J. McKenna, and S. Gong, “Tracking and segmenting people in varying lighting conditions using colour,” In: 3rd. Int. Conference on Face & Gesture Recognition, 1998, pp. 228-233. [22] D. Saxe and R. Foulds, “Toward robust skin identification in video images,”. Proc. Second Int’l Conf. Automatic Face and Gesture Recognition, 1996, pp. 379-384. [23] X. Zhu, J. Yang, and A. Waibel, “Segmenting hands of arbitrary color”, Proceedings. Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000, pp. 446-453. [24] M. H. Yang and N. Ahuja, “Gaussian mixture model for human skin color and its application in image and video databases,” SPIE Storage and Retrieval for Image and Video Databases, vol. 3656, 1999, pp. 458-466. [25] 曹文潔, “猜拳機,” 碩士論文, 中央大學電機工程所, 2007. [26] J.C. Terrillon, M.N. Shirazi, H. Fukamachi, and S. Akamatsu, “Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images,” International Conference on Automatic Face and Gesture Recognition, 2000, pp. 54-61. [27] Y. Dai and Y. Nakano, “Face-texture model based on SGLD and its application in face detection in a color scene,” Pattern Recognition, vol. 29, no. 6, 1996, pp. 1007-1017. [28] K. Sobottka and I. Pitas, “A novel method for automatic face segmentation, facial feature extraction and tracking,” Signal Process. Image Commun., vol. 12, 1998, pp. 263-281. [29] K. Sobottka and I. Pitas, “Extraction of facial regions and features using color and shape information,” Proceedings of the 13th International Conference on Pattern Recognition, vol. 3, 1996, pp. 421-425. [30] D. Chai and K.N. Ngan, “Face segmentation using skin-color map in videophone applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 4, 1999, pp. 551-564. [31] M.J. Jones and J.M. Rehg, “Statistical color models with application to skin detection,” J. Comput. Vision, vol. 46, no. 1, 2002, pp. 81-96. [32] “美國手語字母 - 维基百科,自由的百科全書,” http://zh.wikipedia.org/wiki/%E7%BE%8E%E5%9C%8B%E6%89%8B%E8%AA%9E%E5%AD%97%E6%AF%8D, 2010. [33] J. Triesch and C. von der Malsburg, “Classification of hand postures against complex backgrounds using elastic graph matching,” Image and Vision Computing, vol. 20, 2002, pp. 937-943. [34] 劉哲維, “Static Hand Posture Recognition Based on an Implicit Shape Model,” 碩士論文, 台灣大學電機工程學系, 2010. [35] “數字手勢 - 维基百科,自由的百科全書,” http://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%97%E6%89%8B%E5%8A%BF, 2011. [36] F. Dadgostar and A. Sarrafzadeh, “An adaptive real-time skin detector based on Hue thresholding: A comparison on two motion tracking methods,” Pattern Recognition Letters, vol. 27, 2006, pp. 1342-1352. [37] L. Sigal, S. Sclaroff, and V. Athitsos, “Skin color-based video segmentation under time-varying illumination,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 7, 2004, pp. 862-877. [38] G.R. Bradski, “Computer vision face tracking for use in a perceptual user interface,” Intel Technol. J., vol. 2, no.2, 1998, pp. 1-15. [39] M.C. Shin, K.I. Chang, and L.V. Tsap, “Does colorspace transformation make any difference on skin detection?,” Proc. 6th IEEE Workshop on Applications of Computer Vision (WACV), 2002, pp. 275-279 [40] Q. Zhu, K.T. Cheng, C.T. Wu, and Y.L. Wu, “Adaptive learning of an accurate skin-color model,” Proc. 6th IEEE Internat. Conf. on Automatic Face and Gesture Recognition, 2004, pp. 37-42. [41] R. M. Haralick and L. G. Shapiro, “Computer and Robot Vision,” Addison-Wesley, pp. 31-33, 1993. [42] M.K. Hu, “Visual pattern recognition by moment invariants,” IRE transactions on information theory, vol. 8, no. 8, 1962, pp. 179-187. [43] “Image moment - wikipedia, the free encyclopedia,” http://en.wikipedia.org/wiki/Image_moment, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38895 | - |
| dc.description.abstract | 手勢辨識為目前人機介面的熱門研究主題,由於手勢的方便性及其直覺性,近年來更有車廠想將手勢應用於操控車上的資訊娛樂系統,讓駕駛者可以專心的將視線放於路面上,能夠安全地一邊開車一邊操控車上的手機通話、CD播放器、調整電台等等。
本論文提出以自適應性膚色偵測自動調整使用者的膚色值域,並由此得到使用者的手部影像,接著計算其輪廓匹配程度。我們定義了10種台灣數字手勢,能夠即時的辨識,可用於一般的靜態手勢辨識應用,或是作為動態手勢的基礎,並且整體平均辨識率高達9成,我們發現相較於先前文獻的方法大大提升其便利性,但效能和辨識率卻未受明顯地影響,並且辨識的手勢集更為完整,以及手掌的正反面入鏡、甚至是使用左手皆可準確的辨識。 | zh_TW |
| dc.description.abstract | Hand gesture recognition has become popular in the field of human-computer interaction research. Because of the convenience and intuitiveness of hand gestures, automobile companies have applied hand gestures in their infotainment systems in order to eliminate driver distractions while on the road.
This thesis proposes a hand gesture recognition method using adaptive skin-color detection for automatic skin color thresholds in order to obtain accurate segmentations of the hand contours, from which similarity of the contour shapes can be calculated. Hand gestures for 10 numbers in Taiwanese sign language are defined and are detected in real-time. Our system can be used for generally static hand gesture recognition applications, or can be extended for dynamic hand gesture recognitions. The overall average recognition rate for our system is 90%, and our system is more efficient in comparison to previous work while accuracy is unaffected. In addition, the dictionary of our hand gestures is relatively more complete, and users can even use their left hands to get the same satisfactory recognition results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:51:14Z (GMT). No. of bitstreams: 1 ntu-100-R98921071-1.pdf: 2612806 bytes, checksum: 064d6d49ecd4b159e78f473768ebcba9 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 相關文獻 2 1.4 論文貢獻 4 1.5 論文架構 4 第二章 手勢辨識相關技術 6 2.1 Haar-like特徵擷取 6 2.2 分類法 10 2.2.1 AdaBoost學習演算法 10 2.2.2 拓樸特徵分類法 13 2.3 膚色偵測 14 2.3.1 色彩空間 15 2.3.2 明確定義膚色的門檻值 16 2.3.3 膚色模型化 17 2.3.4 適應光源性調整 17 第三章 數字手勢辨識 19 3.1 手勢定義 19 3.2 系統流程 22 3.3 自適應性膚色偵測 23 3.3.1 門檻值與色彩空間 24 3.3.2 全域膚色偵測器 25 3.3.3 自適應性膚色偵測演算法 25 3.3.4 移動偵測 26 3.4 雜訊去除 27 3.5 去除手臂 29 3.6 輪廓計算與匹配 31 3.6.1 矩 31 3.6.2 中心矩 32 3.6.3 正規化矩 33 3.6.4 Hu矩 33 3.6.5 輪廓匹配 33 第四章 實驗結果 35 4.1 實驗環境配置 35 4.2 去除手臂結果 36 4.3 輪廓計算與匹配實驗結果 38 4.4 手勢辨識結果 41 4.5 效能分析 42 4.6 與先前文獻之比較 43 第五章 結論與未來展望 46 參考文獻 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 靜態手勢辨識 | zh_TW |
| dc.subject | 自適應性膚色偵測 | zh_TW |
| dc.subject | 輪廓匹配 | zh_TW |
| dc.subject | adaptive skin color detection | en |
| dc.subject | hand posture recognition | en |
| dc.subject | shape matching | en |
| dc.title | 基於自適應性膚色偵測與輪廓匹配之即時性手勢辨識 | zh_TW |
| dc.title | Hand Posture Recognition Using Adaptive Skin Color Detection and Shape Matching | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊仁輝,雷欽隆,黃秋煌,郭斯彥 | |
| dc.subject.keyword | 自適應性膚色偵測,輪廓匹配,靜態手勢辨識, | zh_TW |
| dc.subject.keyword | adaptive skin color detection,shape matching,hand posture recognition, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
