Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38894
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤(Tsiu-Kwen Lee)
dc.contributor.authorHung-Yung Chenen
dc.contributor.author陳弘遠zh_TW
dc.date.accessioned2021-06-13T16:51:10Z-
dc.date.available2010-03-03
dc.date.copyright2010-03-03
dc.date.issued2005
dc.date.submitted2005-06-22
dc.identifier.citationReferences
[1] K.I. Beidar and M. Bresar, Extended Jacobson Density Theorem for Rings with
Derivations and Automorphisms, Israel J. Math., 122 (2001), 317-346.
[2] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, \Rings with Generalized
Identities', Monographs and Textbooks in Pure and Applied Mathematics, 196.
Marcel Dekker, Inc., New York, 1996.
[3] L. Carini and V.De Filippis, Commutators with power central values on a Lie
ideal, Paci c J. Math., 193(2) (2000), 269-278.
[4] C.-L. Chuang, GPIs having coe cients in Utumi quotient rings, Proc. Amer.
Math. Soc., 103 (1988), 723-728.
[5] C.-L. Chuang, Di erential identities with automorphisms and antiautomor-
phisms, I, J. Algebra 149 (1992), 371{404.
[6] C.-L. Chuang, Di erential identities with Automorphisms and Antiautomor-
phisms II, J. Algebra, 160 (1993), 130-171.
[7] C.-L. Chuang and T.-K. Lee, Identities with a single skew derivation, J.Algebra
(2005), to appear.
[8] I.N. Herstein, Center-like elements in prim rings, J.Algebra, 60 (1979), 567-574.
[9] A. Giambruno and I. N. Herstein, Derivations with nilpotent values, Rend. Circ.
Mat. Palermo 30 (1981), 199{206.
[10] N. Jacobson, 'Structure of Rings', Amer. Math. Soc. Colloquim Publ., Prov-
idence, 1956.
[11] V.K. Kharchenko, Generalized identities with automorphisms, Algebra i
Logika, 14(2) (1975), 215-237. (English Translation, Algebra and Logic, 14(2)
(1975), 132-148.)
[12] V.K. Kharchenko, Di erential identities of prime rings, Algebra i Logika, 17
(1978), 220-238. (English Translation, Algebra and Logic, 17 (1978), 154-168.)
[13] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118(3)
(1993), 731-734.
[14] C. Lanski, Di erential identities, Lie ideals and Posner's theorems, Paci c J.
Math., 134(2) (1998), 275-297.
[15] C. Lanski and S. Montgomery, Lie struture of prime rings of characteristic 2,
Paci c J. Math., 42 (1972), 117-136.
[16] T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27(8)
(1999), 4057-4073.
[17] T.-K. Lee, Semiprime rings with di erential identities, Bull. Inst. Math. Acad.
Sinica, 20 (1992), 27-38.
[18] W.S. Martindale, III, Prime rings satisfying a generalized polynomial identity,
J. Algebra, 12 (1969), 576-584.
[19] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957),
1093-1100.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38894-
dc.description.abstractIn the thesis we study the problem concerning skew derivations with
power central-values on commutators in prime rings. Precisely, we
prove the following two main results.
Main Theorem 1. Let R be a prime ring with charR 6= 2, an
automorphism of R, and d a -derivation of R. If [d([x; y]); [x; y]]n = 0
for all x; y 2 R, then either d = 0 or R is a commutative ring.
Main Theorem 2. Let R be a prime ring, with an automorphism ,
and d a nonzero -derivation of R. Suppose that [d(x); x]n 2 Z(R) for
all x 2 R. If either charR = 0 or charR > n, then dimC RC 4.
As a corollary to Main Theorem 1, we have the following result.
Corollary. Let R be a prime ring with charR 6= 2, an automorphism
of R, L a noncentral Lie ideal of R, and d a -derivation of R. If
[d(x); x]n = 0 for all x 2 L, then either d = 0 or R is a commutative
ring.
2000 Mathematics Subject Classi cation. 16R53, 16R60, 16N60.
Key words and phrases. Automorphism, prime ring, Martindale quotient ring,
skew derivation, M-inner.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:51:10Z (GMT). No. of bitstreams: 1
ntu-94-R91221001-1.pdf: 173962 bytes, checksum: 655dba5c1e76901e608ce40a6ab42b66 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
1.Introduction 1
2. Preliminaries 4
3. Results on Matrix Rings 7
4. Proofs of Main Theorems 15
5. Counterexamples with char R=2 29
References 30
dc.language.isoen
dc.subjectM-內部型zh_TW
dc.subject同構zh_TW
dc.subject質環zh_TW
dc.subject馬汀達爾除環zh_TW
dc.subject斜導算zh_TW
dc.subjectprime ringen
dc.subjectM-inneren
dc.subjectskew derivationen
dc.subjectMartindale quotient ringen
dc.subjectAutomorphismen
dc.titleSkew Derivations With Power Central-Values On Commutatorsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李白飛,王彩蓮
dc.subject.keyword同構,質環,馬汀達爾除環,斜導算,M-內部型,zh_TW
dc.subject.keywordAutomorphism,prime ring,Martindale quotient ring,skew derivation,M-inner,en
dc.relation.page31
dc.rights.note有償授權
dc.date.accepted2005-06-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
169.88 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved