Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38862
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林博雄
dc.contributor.authorChia-Wei Wangen
dc.contributor.author王嘉瑋zh_TW
dc.date.accessioned2021-06-13T16:49:40Z-
dc.date.available2011-07-26
dc.date.copyright2011-07-26
dc.date.issued2011
dc.date.submitted2011-07-15
dc.identifier.citation林裕豐,2003:谷風環流與對流邊界層發展關係之數值研究。國立臺灣大學大氣科學研究所碩士論文,pp81。
洪敏勝,2010:山坡地區森林次冠層通量特徵之研究。國立臺灣大學地理環境資源學研究所碩士論文,pp129。
鄭森松,2010:二氧化碳通量試驗站。國立臺灣大學生物資源暨農學院實驗林管理處2009年年報,pp9。
張振生,王亞男,賴彥任,梁治文,許炳修,魏聰輝,2008:臺大實驗林溪頭營林區夏季降雨之長期趨勢。臺灣大學生物資源暨農學院實驗林研究報告,22,9-19。
魏聰輝,姚榮鼐,周瑞龍,1995:溪頭山谷風特性之研究。臺灣大學生物資源暨農學院實驗林研究報告,9,71-95。
Baklanov, A. A., B. Grisogono, R. Bornstein, L. Mahrt, S. S. Zilitinkevich, P. Taylor, S. E. Larsen, M. W. Rotach,and H. J. S. Fernando, 2011:The nature, theory, and modeling of atmospheric planetary boundary layers. Bulletin of the American Meteorological Society,92,123-128.

Bischoff-Gauß, I., N. Kalthoff, S. Khodayar, M. Fiebig-Wittmaack,and S. Montecinos, 2008:Model simulations of the boundary-layer evolution over an Arid Andes Valley. Boundary-Layer Meteorology,128,357-379.

Eckman, R. M., 1998:Observations and numerical simulations of winds within a broad forested valley. Journal of Applied Meteorology and Climatology, 37,206-219.

Staebler, R. M. and D. R. Fitzjarrald, 2005:Measuring canopy structure and the kinematics of subcanopy flows in two forests. Journal of Applied Meteorology and Climatology,44,1161-1179.

Tsuneo, K. and K. Fujio, 1995:Daytime boundary layer evolution in a deep valley. part I: Observations in the Ina Valley. Journal of Applied Meteorology and Climatology,34,1082-1091.

Tsuneo, K. and K. Fujio, 1997:Daytime boundary layer evolution in a deep valley. part II: Numerical simulation of the cross-valley circulation. Journal of Applied Meteorology and Climatology,36,883-895.
Vergeiner, I. and E. Dreiseitl, 1987:Valley winds and slope winds - observations and elementary thoughts. Meteorology and Atmospheric Physics,36,264-286.
Wakes, S. J., T. Maegli, K. J. Dickinson, and M. J. Hilton, 2010:Numerical modelling of wind flow over a complex topography. Environmental Modelling & Software,25, 237-247.

Whiteman, C. D., 2000:Mountain meteorology : Fundamentals and application.
Oxford University Press, pp335.
Whiteman, C. D. and J. C. Doran, 1993:The relationship between overlying synoptic-scale flows and winds within a valley. Journal of Applied Meteorology and Climatology,32,1669-1682.

Zängl, G., 2009:The impact of weak synoptic forcing on the valley-wind circulation in the Alpine Inn Valley. Meteorology and Atmospheric Physics,105,37-53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38862-
dc.description.abstract山谷邊界層氣象與一般平地不同,除了普遍的山谷風現象之外,複雜的地形也會造成風場變形,對邊界層的發展有相當大的影響。過去研究文獻指出,山谷地區除了熱力效應產生的山谷風環流之外,環境的盛行風也會影響山谷內的流場,但影響的程度卻遠不及山谷風。本研究以實際觀測和時空高解析度數值模式的風場模擬,來呈現臺灣中部山區臺灣大學實驗林溪頭地區(海拔1000m)之山谷邊界層氣象和流場特徵。
觀測結果顯示,不論白天或夜間,溪頭地區的垂直大氣剖面都與一般平地相似,但是混合層厚度較薄。當地農業氣象站和通量塔以及無線電探空儀皆顯示溪頭地區相當明顯的山谷風現象,並且發現山谷風侷限於山脊線(海拔2000公尺)以下高度,山谷高度外的風場則漸漸趨向盛行風。40m高度通量塔的溫度和風場垂直觀測,則顯示樹冠層高度是近地層的明顯邊界。
風場的電腦模擬部分,本研究以日本Cradle公司的STREAM Computatonal Fluid Dynamics model,模擬風場經過溪頭山谷實際地形的結果,並以穩定的北風(谷風)和兩次實際無線電探空的風場做為模式的風場邊界條件,以及植入40 m解析度數位地形模型資料進行模擬;結果顯示,開口朝向北方的溪頭山谷對於西風或西南風的盛行風來說,由於其位於綜觀環境風場的背風側位置,山谷內的風速偏低;換言之,盛行風對於山谷內的風場影響很小,並且我們不論從觀測和電腦模擬都發現山脊高度區隔風場的現象,因此山谷周遭的山脈高度也就是溪頭山谷邊界層的高度。除此之外,高解析度地形和時間之電腦模擬結果,合理呈現山谷複雜地形內三維小尺度區域的風場特徵。
zh_TW
dc.description.abstractThe characteristics of atmospheric boundary layer in valleys differs from the same issue over plane terrain. Not only mountain-valley wind but also the deformation of wind field play a role in the development of boundary layer circulation. Some literatures showed that, in addition to mountain-valley wind circulation which is caused by the thermal effect, the prevailing winds have little impact on the wind flow in the valley. Through in-situ observation and high-resolution spatial-time numerical simulation, this research presents the phenomenon of valley boundary layer and the characteristics of wind flow in Xitou valley, which locates in the middle Taiwan with near 1000-m altitude and is part of the Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University.
The in-situ observation showed that, except for the thinner mixed layer, the vertical atmospheric profile in Xitou is similar to that in a general plane. Obvious mountain-valley wind can be observed from local agricultural weather station、40-m height flux tower and the balloon radiosondes. It was also found the mountain-valley wind can only blow under the height of mountain ridges (~2000m MSL), and the wind would approach to prevailing winds above the mountain ridges instead. The temperature and wind field observation of 40m-height flux tower indicate the top of canopy is the critical level near surface.
In computational simulations, this study uses STREAM Computational Fluid Dynamics model provide by Cradle Corp. of Japan, to simulate the wind field passing over the real topography in Xitou. In model settings, one stable northerly wind and two real vertical profiles of wind flow from radiosondes’ measurement were set as the boundary condition of wind. The 40m-resolution topography was also imported in these simulations. The results indicated that the northerly V-shape Xitou valley has small wind speed all the time which is caused by the leeside of the mountains for synoptic winds (westerly or west-southerly wind) at Taiwan. In other words, the prevailing winds have little impact on the wind field of Xitou valley. We also found that the wind field was separated by the height of mountain ridges in observation and simulations similarly. Obviously, the height of boundary layer of Xitou valley is decided by the topographic factor. In addition, the numerical simulations with the high-resolution topography gave reasonable results on the characteristics of 3D wind flow in this small-scale valley.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:49:40Z (GMT). No. of bitstreams: 1
ntu-100-R98229018-1.pdf: 8689226 bytes, checksum: baaa82d8e3a7a91100759c4df199870e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 研究動機 1
1.2 山谷邊界層氣象特徵 2
1.3 山谷邊界層流場特徵 3
1.4 論文架構與目標 4
第二章 資料來源與模式介紹 5
2.1 觀測與模式模擬地點介紹 5
2.2 觀測工具 6
2.2.1 溪頭苗圃農業氣象站 6
2.2.2 溪頭二氧化碳通量觀測塔 6
2.3 密集觀測計畫 7
2.3.1 第一次密集觀測計畫 7
2.3.2 第二次密集觀測計畫 7
2.4 STREAM 模式 7
2.4.1 模式概述 7
2.4.2 控制方程 8
第三章 個案觀測資料分析 11
3.1 綜觀天氣概況 11
3.2 溪頭農業氣象站資料分析 11
3.3 通量塔多層氣象資料分析 12
3.4 探空資料分析 14
3.5 小結 16
第四章 數值模式模擬與診斷 18
4.1 STREAM模式-理想流場模擬 18
4.1.1 模式設定 18
4.1.2 模式輸出結果與討論 19
4.2 STREAM模式-真實流場模擬 21
4.2.1 IOP-1探空模擬 21
4.2.1.1 模式設定 21
4.2.1.2 模式輸出結果與討論 21
4.2.2 IOP-2探空模擬 23
4.2.2.1 模式設定 23
4.2.2.2 模式輸出結果與討論 23
第五章 總結與討論 25
參考文獻 28
dc.language.isozh-TW
dc.subject山谷zh_TW
dc.subjectmountain valleyen
dc.title山谷邊界層之觀測與模擬zh_TW
dc.titleThe Observation and Model Simulation of Valley Boundary Layeren
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾于恒,莊振義,賴彥任,魏聰輝
dc.subject.keyword山谷,zh_TW
dc.subject.keywordmountain valley,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2011-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved