Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38848
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝尚賢
dc.contributor.authorLi-Pen Wangen
dc.contributor.author汪立本zh_TW
dc.date.accessioned2021-06-13T16:49:01Z-
dc.date.available2006-06-02
dc.date.copyright2005-07-13
dc.date.issued2005
dc.date.submitted2005-06-26
dc.identifier.citationAndreadis, I., and A. Serletis (2002), “Evidence of A Random Multifractal Turbulent Structure In The Dow Jones Industrial Average,” Chaos, Solitons and Fractals, Vol. 13, pp. 1309-1315.
Breslin, M. C., and J. A. Belward (1999), “Fractal Dimensions for Rainfall Time Series,” Mathematics and Computers in Simulation, Vol. 48, pp. 437-446.
Cambel, A. B., Applied Chaos Theory: A Paradigm for Complexity, Academic Press, Inc., San Diego, 1993.
Crownover, R. M., Introduction to Fractals and Chaos, Jones and Bartlett Publishers, London, 1995.
De Lima, M. I. P., and J. Grasman (1999), “Multifractal Analysis of 15-min and Daily Rainfall from a Semi-arid region Portugal,” Journal of Hydrology, Vol. 220, pp. 1-11.
Evertsz, C. J., and B. B. Mandelbrot, Multifractal Measures, Appendix B, In: Chaos and Fractals, Edited by H.–O. Peitgen, H. Jurgens and D. Saupe, Springer, New York, 1992, pp. 922-953.
Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.
French, Mark N., W. F. Krajewski and R. R. Cuykendall (1992), “Rainfall Forecasting in Space and Time Using A Neural Network,” Journal of Hydrology, Vol. 137, pp. 1-31.
Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Inc., New York, 1989.
Gupta, V. K., and E. Waymire (1987), “On Taylor’s Hypothesis and Disspipation in Rainfall,” Journal of Geophysical Research, Vol. 92(D8), pp. 9657-9660.
Gupta, V. K., and E. Waymire (1990), “Multiscaling Properties of Spatial Rainfall and River Flow Distributions,” Water Resources Research, Vol. 95(D3), pp.1999-2009.
Gutierrez, J. M., and M. A. Rodriguze (2000), “A New Exact Method for Obtaining The Multifractal Spectrum of Multiscaled Multinomial Measures and IFS Invariant Measures,” Chaos Solitons and Fractals, Vol. 11, pp. 675-683.
Hubert, P., Y. Tessier, S. Lovejoy, D. Schertzer, F. Schmitt, P. Ladoy, J. P. Carbonnel, S. Violette and I. Desurosne (1993), “Multifractals and Extreme Rainfall Events,” Geophysical Research Letters, Vol. 20(10), pp. 931-934.
Jayawardena, A. W., and F. Lai (1994), “Analysis and Prediction of Chaos in Rainfall and Stream flow time series,” Journal of Hydrology, Vol. 153, pp. 23-52.
Kedem, B., and L. S. Chiu (1987), “Are Rain Rate Processes Self-Similar?” Water Resources Research, Vol. 23(10), pp. 1816-1818.
Ladoy, P., S. Lovejoy and D. Schertzer, Extreme Variability of Climatological Data : Scaling and Fractals, Edited by D. Schertzer and S. Lovejoy, Kluwer Acade., Norwell, Mass., 1991, pp. 241-250.
Lavalle, D., S. Lovejoy and D. Schertzer, Nonlinear Variability and Landscape Topography : Analysis and Simulation. In : Fractal in Geography, Edited by DeCola, L. and Lam, N.(Eds.), PTR Prentice-Hall, 1993, pp. 158-192.
Lovejoy, S., and D. Schertzer (1985), “Generalized Scale Invariance in the Atmosphere and Fractal Models of Rain,” Water Resources Research, Vol. 21(8), pp. 1233-1250.
Luk, K. C., J. E. Ball and A. Sharma (2001), “An Application of Artificial Neural Networks for Rainfall Forecasting,” Mathematical and Computer Modeling, Vol. 33, pp. 683-693.
Mandelbrot, B. B, Fractals: Form, Chance, and Dimension, W. H. Freeman, San Fransisco, 1977.
Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1982.
Mayer, L. (1992), “Fractal Characteristics of Desert Storm Sequences and Implications for Geomorphic Studies,” Geomorphology, Vol. 5, pp. 167-183.
Olsson, J., J. Niemczynowicz, R. Berndtsson and M. Larson (1992), “An Analysis of the Rainfall Time Structure by Box Counting – Some Practical Implications,” Journal of Hydrology, Vol. 137, pp. 261-277.
Olsson, J., J. Niemczynowicz and R. Berndtsson (1993), “Fractal Analysis of High-Resolution Rainfall Time Series,” Journal of Geophysical Research – Atmospheres, Vol. 98(D12), pp. 23265-23274.
Olsson, J., and J. Niemczynowicz (1996), “Multifractal Analysis of Daily Spatial Rainfall Distributions,” Journal of Hydrology, Vol. 187, pp. 29-43.
Pereira, M. G., G. Corso, L. S. Lucena and J. E. Freitas (2005), “A Random Multifractal Tilling,” Chaos, Solitons and Fractals, Vol. 23, pp. 1105-1110.
Rodriguez-Iturbe, I., F. B. De Power, M. B. Sharifi and K. P. Georgakakos (1989), “Chaos in Rainfall”, Water Resource Research, Vol. 25(7), pp. 1667-75.
Schuster, H. G., Deterministic Chaos : An Introduction, Third Augmented Edition, VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1995.
Sivakumar, B. (2001), “Is A Chaotic Multi-fractal Approach for Rainfall Possible?”, Hydrological Processes, Vol. 15, pp. 943-955.
Sivakumar, B. (2004), “Chaos Theory in Geophysics: Past, Present and Future”, Chaos, Solitons and Fractals, Vol. 19, pp. 441-462.
Sugimoto, S., E. Nakakita and S. Ikebuchi (2001), “A Stochastic Approach to Short-term Rainfall Prediction Using A Physically Based Conceptual Rainfall Model,” Journal of Hydrology, Vol. 242, pp. 137-155.
Tessier, Y., S. Lovejoy and D. Schertzer (1993), “Universal Multifractals : Theory and Observations for Rain and Clouds,” Journal of Applied Meteorology, Vol. 32(2), pp. 223-250.
Tessier, Y., S. Lovejoy, P. Hubert, D. Schertzer and S. Pecknold (1996), “Multifractal Analysis and Modeling of Rainfall and Rainfall Scaling, Causal Transfer Function,” Journal of Geophysics Research, Vol. 101(D21), pp. 26427-26440.
Thielen J., B. Boudevillain and H. Andrieh (2000), “A Radar Data Based Short-term Rainfall Prediction Model for Urban Areas— A Simulation Using Meso-scale Meteorological Modeling,” Journal of Hydrology, Vol. 239, pp. 97-114.
Waymire, E. (1985), “Scaling Limits and Self-Similarity in Precipitation Fields,” Water Resources Research, Vol. 21(8), pp. 1271-1281.
Zawadzki, I. (1987), ‘Fractal Structure and Exponetial Decorrelation in rain,’ Journal of Geophysical Research, Vol. 92(D8), pp. 9586-9590.
李昀寰(2001),「颱風降雨量與風速之統計預測」,國立中央大學統計研究所碩士論文。
林淑真(1999),「碎形與渾沌在非線性水文系統之解析與預報」,國立成功大學博士論文。
林柏承(2000),「應用類神經網路於颱風降雨量的推估」,國立成功大學水利及海洋工程學研究所碩士論文。
林旭信(2000),「台灣地區時雨量與日雨量之多重碎形分析」,國立成功大學水利及海洋工程學研究所碩士論文。
林建發(2000),「颱風降雨量之統計迴歸預測」,國立中央大學統計研究所碩士論文。
吳瑞賢、朱佳仁、林永敏、蘇文瑞(1994),「台灣北部地區溫度、雨量變遷之初步研究」,八十三年度農業工程研討會論文集,高雄,第401-415頁。
孫建平(1995),「倒傳遞神經網路演算法於時雨量預測之研究」,八十四年農業工程研討會論文集,第209-233頁。
陳儒賢(2003),「類神經網路於水文系統之研究」,國立台灣大學土木工程研究所博士論文。
陳正斌(2004),「應用模糊理論於颱風降雨量之推估」,國立成功大學水利及海洋工程學研究所碩士論文。
許正芳(1995),「台灣地區降雨量之碎形分析」,國立台灣大學農業工程學研究所碩士論文。
郭振泰、謝尚賢、楊明德(2003),「下水道系統自動化監測、操作及維修系統之研究」,內政部營建署。
黃潤生、胡家元(1998),「再探武漢地區雨強分維數隨時間變化」,武漢大學學報(自然科學版),第44卷,第1期,第133-136頁。
葉李華譯、Stewart, Ian著(1996),大自然的數學遊戲:科學大師系列(6),天下文化出版社,台北,第145-193頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38848-
dc.description.abstract過去二十年來多重碎形理論的發展已逐漸成熟,相關的研究成果已顯示出自然界的許多時間歷程資料存在著多重碎形的現象,這些研究成果指出時間序列所表現出的統計自相似性是與尺度有關的。有別於單一碎形,多重碎形理論可以描述時間序列與尺度變化的關係,一般學者相信從多重碎形理論的本質可以用來合成與預測具有高解析度的雨量時間序列,然而,相關的研究主要還停留於降雨結構的分析。
有鑑於此,本研究提出整合多重碎形理論及非線性動力學的方法,結合非線性動力學在動態預測的優勢,以及多重碎形理論描述時間序列尺度與統計自相似性的能力,以雨量時間序列為研究對象,從歷史雨量資料建立多重碎形譜,進而求取相對應的動力方程組。並且依照此方法的特性,本研究亦設計出融合知識庫概念的雨量預測系統架構,並且依循此架構實作出雨量預測系統之雛型。
經由實際案例分析的過程,本研究亦對此架構可能遇到的問題提出解決的方法;並且分析預測的結果,驗證此方法及架構之可行性;最後,並提出與本研究相關的議題,作為未來研究的參考。
zh_TW
dc.description.abstractThe theory of Multifratals has been evolved successfully during the last two decades. Many research reports have indicated that time-series in nature exhibits multifractal behaviors. This means that the statistical self-similarity of the time-series is related to the measured scales. From the mathematical point of view, many researchers believe that Multifractals has the ability to synthesize and forecast high resolution time series of rainfalls. However, the related research still only focuses its efforts on analyzing the structure of rainfall rather than on forecasting or synthesizing it. Therefore, this research proposes an approach for forecasting high resolution rainfall data through combining the theory of Nonlinear Dynamics and Multifractals. The proposed approach estimates the corresponding multifractal spectra from the historical rainfall data, and then determines the best values for the parameters of the corresponding dynamic systems based on these multifractal spectra. This research, based the proposed approach, also designs a rainfall forecast framework, intergrating the Multifractals with the concept of Konwledge Base, and then implements a prototype system from this framework. Finally, through applying the prototype system on forecasting the rainfall in a given rain event, this research conducts a feasibility and accuracy study on the proposed approach and framework.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:49:01Z (GMT). No. of bitstreams: 1
ntu-94-R92521602-1.pdf: 4125366 bytes, checksum: 56ece17e7346000f2a10bea9c76fa37f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xv
表目錄 xv
第一章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 2
1-3 研究方法與步驟 8
1-4 論文組織 9
第二章 多重碎形之理論與實作 11
2-1 碎形幾何學 11
2-1-1 碎形的意義 11
2-1-2 碎形維度的計算 12
2-2 多重碎形理論 15
2-2-1 多重碎形的意義 15
2-2-2 多重碎形的特性 16
2-2-3 多重碎形測度之生成法 17
2-2-4 二項式測度 曲線之特性 21
2-2-5 多項式之多重碎形測度 23
2-2-6 多重碎形測度之雷建德轉換式 25
2-3 多重碎形譜之實作 26
第三章 降雨疊代函式系統之建立 31
3-1 非線性動力系統 31
3-2 疉代函式系統(Iterated Function System, IFS) 31
3-3 實際降雨資料推估疊代函式系統之方法 33
第四章 降雨預測系統實作與案例分析 37
4-1 系統流程概述 37
4-2 系統架構實作 43
4-3 案例分析 47
4-4 結果分析與討論 65
第五章 結論與建議 69
5-1 結論 69
5-2 建議 70
參考文獻 73
附錄A 歷史降雨資料之比對 79
附錄B 預測降雨資料之比對 85
附錄C 雨量預測之歷程 91
作者簡歷 123
dc.language.isozh-TW
dc.subject碎形zh_TW
dc.subject雨量預測zh_TW
dc.subject非線性動力學zh_TW
dc.subject多重碎形zh_TW
dc.subjectmultifractalsen
dc.subjectnonlinear dynamicsen
dc.subjectfractalsen
dc.subjectforecasten
dc.title應用多重碎形理論於雨量預測之研究zh_TW
dc.titleApplications of Multifractals to Rainfall Forecasten
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐年盛,鄭克聲
dc.subject.keyword碎形,多重碎形,非線性動力學,雨量預測,zh_TW
dc.subject.keywordfractals,multifractals,nonlinear dynamics,forecast,en
dc.relation.page122
dc.rights.note有償授權
dc.date.accepted2005-06-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
4.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved