Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38812
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德
dc.contributor.authorTsai-Yu Huangen
dc.contributor.author黃才育zh_TW
dc.date.accessioned2021-06-13T16:47:22Z-
dc.date.available2005-07-04
dc.date.copyright2005-07-04
dc.date.issued2005
dc.date.submitted2005-06-28
dc.identifier.citationReferences for chapter 1
[1] D. Stein, K. v. Klitzing, and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).
[2] H. L. Störmer, R. Dingle, A. C. Gossard, W. Wiegmann, and M. D. Struge, Solid State Commun. 29, 705 (1979).
[3] R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).

References for chapter 2
[1] P. T. Coleridge, Semicond. Sci. Technol. 5, 961 (1990).
[2] P. T. Coleridge, R. Storner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).
[3] A. F. Brana, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Muñoz, and F. Omnes, J. Appl. Phys. 88, 932 (2000).
[4] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[5] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
References for chapter 4
[1] L. D. Landu and E. M. Lifishitz in Quantum Mechanics Non-relativistic Theory, (Pergamon Press, New York 1977).
[2] P. T. Coleridge, Semicond. Sci. Technol. 5, 961 (1990).
[3] P. T. Coleridge, R. Storner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).
[4] A. F. Brana, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Muñoz, and F. Omnes, J. Appl. Phys. 88, 932 (2000).
[5] A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Phys. Rev. Lett. 16, 901 (1966); T. Ando, J. Phys. Soc. Jpn. 37, 279 (1974); T. Ando, Y. Matsumoto, and Y. Uemura, J. Phys. Soc. Jpn. 39, 279 (1975); A. Isihara and L. Smrcka, J. Phys. C 19, 6777 (1986); D. R. Hang, C.-T. Liang, J.-R. Juang, Tsai-Yu Huang, W. K. Hung, Y. F. Chen, Gil-Ho Kim, Jae-Hoon Lee, and Jung-Hee Lee, J. Appl. Phys. 93, 2055 (2003).
[6] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[7] S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 46, 2223 (1992).
[8] D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S. L. Sondhi, Phys. Rev. Lett. 79, 479 (1997).
[9] Y. Huo, R. E. Hetsel, and R. N. Bhatt, Phys. Rev. Lett. 70, 481 (1993).
[10] C. F. Huang, Y. H. Chang, H. H. Cheng, Z. P. Yang, S. Y. Wang, H. D. Yeh, H. T. Chou, C. P. Lee and G. J. Hwang, Solid State Commun. 126, 197 (2003); C. F. Huang, Y. H. Chang , H. H. Cheng , C.-T. Liang and G. J. Hwang, Physica E 22, 232 (2004).
[11] P. T. Coleridge, P. Zawadzki, and A. S. Sachrajda, Phys. Rev. B 49, 10 798 (1994).
[12] H. W. Jiang, C. E. Johnson K. L. Wang, and S. T. Hannahs, Phys. Rev. Lett. 71, 1439 (1993).
[13] B. Huckestein, Phys. Rev. Lett. 84, 3141 (2000).
[14] D. Z. Liu, X. C. Xie, and Q. Niu, Phys. Rev. Lett. 76, 975 (1996).
[15] D. N. Sheng, Z. Y. Weng, and X. G. Wen, Phys. Rev. B 64, 165317 (2001).
[16] D. N. Sheng and Z. Y. Weng, Phys. Rev. Lett. 80, 580 (1998).
[17] S.-H. Song, D. Shahar, D. C. Tsui, Y. H. Xie, and Don Monroe, Phys. Rev. Lett. 78, 2200 (1997).
[18] C. F. Huang, Y. H. Chang, C. H. Lee, H. T. Chou, H. D. Yeh, C.-T. Liang, Y. F. Chen, H. H. Lin, H. H. Cheng, and G. J. Hwang, Phys. Rev. B 65, 045303 (2002).
[19] C. H. Lee, Y. H. Chang, Y. W. Suen, H. H. Lin, Phys. Rev. B 58, 10629 (1998).
[20] Tsai-Yu Huang, J. R. Juang, C. F. Huang, Gil-Ho Kim, Chao-Ping Huang, C.-T. Liang, Y. H. Chang, Y. F. Chen, Y. Lee, and D. A. Ritchie, Physica E 22, 240 (2004).
[21] G. H. Kim, J. T. Nicholls, S. I. Khondaker, I. Farrer, and D. A. Ritchie, Phys. Rev. B 61, 10910 (2000).
[22] A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988); H. P. Wei, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).
[23] M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, Y. H. Xie, and M. Shayegan, Europhys. Lett. 46, 775 (1999).
[24] G. H. Kim, C.-T. Liang, C. F. Huang, J. T. Nicholls, D. A. Ritchie, P. S. Kim, C. H. Oh, J. R. Juang, and Y. H. Chang, Phys. Rev. B 69, 073311 (2004).
[25] I. P. Smorchkova, N. Samarth, J. M. Kikkawa, and D. D. Awschalom, Phys. Rev. B 58, R4238 (1998).
[26] Y. Hanein, N. Nenadovic, D. Shahar, Hadas Shtrikman, J. Yoon, C. C. Li, and D. C. Tsui, Nature 400, 735 (1999).
[27] S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994).
[28] G. M. Minkov, O. E. Rut, A. V. Germanenko, A. A. Sherstobitov, V. I. Shashkin, O. I. Khrykin, and V. M. Daniltsev, Phys. Rev. B 64, 235327 (2001).
[29] J. J. Mares, X. Feng, F. Koch A. Kohl, and J. Kristofik, Phys. Rev. B 50, 5213 (1994).
[30] I. V. Gornyi, A. P. Dmitriev, and V. Yu. Kachorovskii, Phys. Rev. B 56, 9910 (1997).
[31] Murzin, Jansen and Claus, Phys. Rev. Lett. 92, 016802 (2004).
[32] L. Li, Y. Y. Proskuryakov, A. K. Savchenko, E. H. Linfield, and D. A. Ritchie, Phys. Rev. Lett. 90, 076802 (2003).

References for chapter 5
[1] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[2] H. W. Jiang, C. E. Johnson, K. L. Wang, and S. T. Hannahs, Phys. Rev. Lett. 71, 1439 (1993); R. J. F. Hughes, J. T. Nicholls, J. E. F. Frost, E. H. Linfield, M. Pepper, C. J. B. Ford, D. A. Ritchie, G. A. C. Jones, E. Kogan, and M. Kaveh, J. Phys.: Condens. Matter 6, 4763 (1994).
[3] S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 46, 2223 (1992).
[4] V. J. Goldman, M. Shayegan, and D. C. Tsui, Phys. Rev. Lett. 61, 881 (1988).
[5] R. L.Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K.W.West, and K. W. Baldwin, Phys. Rev. B 38, 7881 (1988).
[6] D. Shahar, D. C. Tsui, M. Shayegan, J. E. Cunningham, E. Shimshoni, and S. L. Sondhi, Solid State Commun. 102, 817 (1997); E. Peled, D. Shahar, Y. Chen, D. L. Sivco, and A. Y. Cho, Phys. Rev. Lett. 90, 246802 (2003).
[7] D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S. L. Sondhi, Phys. Rev. Lett. 79, 479 (1997).
[8] M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, Y. H. Xie, and Don Monroe, Nature (London) 395, 675 (1998).
[9] I. Ruzin and S. Feng, Phys. Rev. Lett. 74, 154 (1995).
[10] E. Shimshoni and A. Auerbach, Phys. Rev. B 55, 9817 (1997).
[11] U. Zülicke and E. Shimshoni, Phys. Rev. B 63, 241301(R) (2001); U. Zülicke and E. Shimshoni, Physica E 12, 674 (2002).
[12] E. Shimshoni, Phys. Rev. B 60, 10691 (1999).
[13] L. P. Pryadko, A. Auerbach, Phys. Rev. Lett. 82, 1253 (1999).
[14] D. N. Sheng and Z. Y. Weng, Phys. Rev. B 59, R7821 (1999).
[15] C. W. J. Beenakker, and H. van Hoiuten, Solid State Physics: Advances in Research and Applications, Ed. H. Ehrenreich and D. Turnbull (Academic, San Diego, 1991), Vol 44, pp. 207, 208.
[16] A. M. M. Pruisken, Phys. Rev. B 32, 2636 (1985).
[17] H. P. Wei, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev. B 33, 1488 (1985).
[18] G. H. Kim, J. T. Nicholls, S. I. Khondaker, I. Farrer, and D. A. Ritchie, Phys. Rev. B 61, 10910 (2000); Gil-Ho Kim, C.-T. Liang, C. F. Huang, J. T. Nicholls, D. A. Ritchie, P. S. Kim, C. H. Oh, J. R. Juang, and Y. H. Chang, Phys. Rev. B 69, 073311 (2004).
[19] S. S. Murzin, M. Weiss, A. G. M. Jansen, and K. Eberl, Phys. Rev. B 66, 233314 (2002).
[20] Tsai-Yu Huang, C.-T. Liang, Gil-Ho Kim, C. F. Huang, Chao-Ping Huang, and D. A. Ritchie, unpublished.
[21] C. H. Lee, Y. H. Chang, Y. W. Suen, and H. H. Lin, Phys. Rev. B 56, 15238 (1997).
[22] B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984); J. J. Mareš, X. Feng, F. Koch, A. Kohl, and J. Krištofik, Phys. Rev. B 50, 5213, (1994).

References for chapter 6
[1] R. Dingle, H. L. Stormer , A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).
[2] For a review, see C. W. J. Beenakker, and H. van Houten, Solid State Physics, 44, 1 (1991).
[3] F. F. Fang, and P. J. Stiles, Phys. Rev. 174, 823 (1968).
[4] J. F. Janak, Phys. Rev. 178, 1416 (1969).
[5] K. Suzuki, and Y. Kawamoto, J. Phys. Sco. Jpn. 35, 1456 (1973).
[6] T. Ando, and Y. Uemura, J. Phys. Sco. Jpn. 37, 1044 (1974).
[7] C. S. Ting, T. K. Lee, and J. J. Quinn, Phys. Rev. Lett. 34, 870 (1975).
[8] Th. Englert, D. C. Tsui, A. C. Gossard, and Ch. Uihlein, Surf. Sci. 113, 295 (1982).
[9] R. J. Nicholas, R. J. Haug, K. von Klitzing, and G. Weimann, Phys. Rev. B 37, 1294 (1988).
[10] A. Usher, R. J. Nicholas, J. J. Harris, C. T. Foxon, Phys. Rev. B 41, 1129 (1990).
[11] C. Kallin, and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).
[12] I. Glozman, C. E. Johnson, and H. W. Jiang, Phys. Rev. Lett. 74, 594 (1995).
[13] G. H. Kim, J. T. Nicholls, S. I. Khonadaker, I. Farrer, and D. A. Ritchie, Phys. Rev. B 61, 10910 (2000).
[14] D. R. Leadley, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Phys. Rev. B 58, 13036 (2000).
[15] A. Schmeller, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 75, 4290 (1995).

References for chapter 7
[1] R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).
[2] J. F. Jank, Phys. Rev. 178, 1416 (1969).
[3] F. F. Fang, and P. J. Stiles, Phys. Rev. 174, 823 (1968).
[4] K. Suzuki, and Y. Kawamoto, J. Phys. Sco. Jpn. 35, 1456 (1973).
[5] T. Ando, and Y. Uemura, J. Phys. Sco. Jpn. 37, 1044 (1974).
[6] C. S. Ting, T. K. Lee, and J. J. Quinn, Phys. Rev. Lett. 34, 870 (1975).
[7] Th. Englert, D. C. Tsui, AC Gossard, and Ch. Uilein, Surf. Sci. 113, 295 (1982).
[8] R. J. Nicholas, R. J. Haug, K. v. Klitzing, and G. Weimann, Phys. Rev. B 37, 1294 (1988).
[9] A. Usher, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Phys. Rev. B 41, 1129 (1990).
[10] C.-T. Liang, Tsai-Yu Huang, Yu-Ming Cheng, Chao Han Pao, Chun-Cheng Lee, Gil-Ho Kim, and J. Y. Leem, Chinese Journal of Physics 39, 369 (2001).
[11] D. R. Leadley, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Phys. Rev. B 58, 13036 (1998).
[12] V. T. Dolgopolov, A. A. Shashkin, A. V. Aristov, D. Schmerek, W. Hansen, J. P. Kotthaus, and M. Holland, Phys. Rev. Lett. 79, 729 (1997).
[13] V. S. Khrapai, A. A. Shashkin, and V. T. Dolgopolov, Phys. Rev. Lett. 91, 126404 (2003).
Reference for chapter 8
[1] E. Shimshoni and A. Auerbach, Phys. Rev. B 55, 9817 (1997).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38812-
dc.description.abstract我們研究了二維砷化鎵電子系統在磁場下之傳輸的量測。本論文包含下列四個主題:
1.低磁場下“絕緣體-量子霍爾”相變的研究
我們利用了具有閘極且含有自身聚集形成的砷化銦量子點的二維砷化鎵電子系統來研究“絕緣體-量子霍爾導體”的相變;此相變是分離了低磁場的絕緣體和填充係數為4的量子霍爾態。為了從低磁場的絕緣體直接地進入填充係數為4的量子霍爾態,此系統會經過一個從低磁場之侷域化到藍道之量子化的交點。事實上,此交點涵蓋了很廣的磁場範圍,並非只靠近在發生“絕緣體-量子霍爾導體”相變的臨界點的一小範圍。
2.不同的霍爾絕緣體之研究
我們利用了具有閘極且含有自身聚集形成的砷化銦量子點的二維砷化鎵電子系統來研究不同的霍爾絕緣體。實驗結果顯示在發生量子化的霍爾絕緣體時,並不需要伴隨著發生“絕緣體-量子霍爾”的相變。由我們的實驗結果可知,因為半圓理論(semicircle law)在量子霍爾態中可以是不符合的,所以在發生“絕緣體-量子霍爾”轉變時量子化的霍爾平台可以不存在。當量子霍爾態被無序破壞時,在絕緣態中可同時觀察到半圓理論的出現與崩潰。
3.直接量測一具閘極的二維砷化鎵電子氣之自旋能隙
我們研究了具閘極的砷化鎵二維電子氣之磁傳輸。從能量(E)-磁場(B)的圖形來探討具有自旋分裂的藍道能階時,我們可以對於不同的藍道能階之自旋能隙進行直接的量測。所量測出來的g-係數會大大地超過其在砷化鎵塊材的值(0.44),這是由於電子-電子交互作用所造成的。當藍道能階的指數減少時,則g-係數會增加;這是由於當被佔據的藍道能階的數目減少時,則電子-電子交互作用的強度會增加的緣故。而且,由傳統活化能方式所得到的g-係數要比由直接量測所得的值約小2.5倍。
4.具自旋分裂的砷化鎵二維電子系統之“遷移率能隙”
我們進行了對於二維砷化鎵電子氣之電子的g-係數的磁傳輸量測。為了得知自旋能隙,我們量測了具自旋分裂的縱向電阻率的最小值,因其顯示了可被活化的行為。由不同奇數的填充係數的自旋能隙,我們可以得到有效的g-係數,且其值大大地超過了砷化鎵塊材的值(0.44)。這個增加的效應是由於多體的電子-電子交互作用所引起的。我們的實驗結果提供了可信服的證據,說明了由傳統的的活化能方式所得到的是“遷移率能隙”,這與真實的自旋能隙有很大的不同。
zh_TW
dc.description.abstractWe have investigated the low-temperature magnetotransport measurements in two-dimensional GaAs electron systems. This dissertation consists of the following four topics.
1. On the low-field insulator-quantum Hall transitions
We studied the insulator-quantum Hall conductor transition which separates the low-field insulator from the quantum Hall state of the filling factor /nu=4 on a gated two-dimensional GaAs electron system containing self-assembled InAs quantum dots. To enter the /nu=4 quantum Hall state directly from the low-field insulator, the system undergoes a crossover from the low-field localization to Landau quantization. The crossover, in fact, covers a wide range with respect to the magnetic field rather than only a small region near the critical point of the insulator-quantum Hall conductor transition.
2. On the various Hall insulators
We have studied the various Hall insulators (HIs) in a gated two-dimensional GaAs electron system containing self-assembled InAs quantum dots. It is shown that the quantized HI is not necessarily accompanied by the insulator-quantum Hall (I-QH) transition. From our study, the semicircle law can become invalid in the QH liquid so that the quantized Hall plateau is absent at the I-QH transition. The appearance and breakdown of the semicircle law in the insulating phase can be both observed when the QH liquid is destroyed by disorder.
3. Direct measurement of the spin gaps in a gated two-dimensional GaAs electron gas
We have investigated magneto transport in gated GaAs two-dimensional electron gases. From the evolution of spin-split Landau levels (LLs) in the Energy (E)-magnetic field (B) plane, we can perform direct measurements of the spin gap for different LLs. The measured g-factor is greatly enhanced over its bulk value in GaAs (0.44) due to electron-electron (e-e) interactions. As the LL index decreases, the g-factor increases, suggesting that the strength of e-e interactions increases as the number of occupied LL decreases. Moreover, the g-factor determined from the conventional activation energy studies is ~ 2.5 times smaller than that deduced from the direct measurements.

4. “Mobility gap” of a spin-split GaAs two- dimensional electron system
We have performed magnetotransport measurements of the electron g-factor in a two-dimensional GaAs electron gas. In order to obtain the spin gap△S, we measure the spin-split longitudinal resistivity minimum which shows an activated behavior. From the spin gaps at different odd filling factors, we can obtain the effective g-factor which is greatly enhanced over its bare value (0.44) in GaAs. This enhancement is due to many-body electron-electron interactions. Our experimental results provide compelling evidence that conventional activation energy studies yield a “mobility gap” which can be very different from the real spin gap in the energy spectrum.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:47:22Z (GMT). No. of bitstreams: 1
ntu-94-D90222011-1.pdf: 1117753 bytes, checksum: a3265f4d06a698f89da3528b217b0487 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsChapter 1 Introduction to a gated two-dimensional GaAs electron system 1
1.1 Introduction…………………………………………………………1
1.2 The modulation doped GaAs/AlGaAs heterostructure………2
1.3 Schottky barrier gate……………………………………4

Chapter 2 Fundamental transport properties in a two-dimensional electron system 9
2.1 Density of states………………………………………………9
2.2 Drude model and Einstein relation………………………11
2.3 Landau quantization…………………………………………12
2.3.1 Landau levels…………………………………………12
2.3.2 Shubnikov-de Haas oscillations…………………14
2.3.3 Integer quantum Hall effect………………………15
2.3.4 Edge states………………………………………………17
2.3.5 Effect of spin……………………………………………19

Chapter 3 Sample fabrication and experimental techniques 21
3.1 Introduction…………………………………………………21
3.2 Optical lithography………………………………………………………21
3.3 Experimental equipment: He3 system containing a 15 T superconductor magnet……………………………………………25
3.4 Four-terminal measurements………………………………27
Chapter 4 On the low-field insulator-quantum Hall transitions 29
4.1 Introduction…………………………………………………30
4.2 Background………………………………………………………31
4.2.1 Previous work………………………………………….31
4.2.2 Global phase diagram of the integer quantum Hall effect………………33
4.3 Sample structure and experiment……………………….34
4.4 Results and discussion………………………………36
4.5 Summary……………………………………………………44
Chapter 5 On the various Hall insulators 47
5.1 Introduction………………………………………………48
5.2 Background…………………………………………………48
5.2.1 Previous work………………………………………..48
5.2.2 The phase-incoherence network model………….53
5.2.3 Temperature-driven flow lines……………………55
5.3 Sample structure and experiments…………………..56
5.4 Results and discussion…………………………………58
5.5 Summary…………………………………………….65
Chapter 6 Direct measurements of the spin gaps in a two- dimensional GaAs electron system 69
6.1 Introduction…………………………………………………70
6.2 Background……………………………………………………70
6.2.1 Previous work…………………………………………70
6.2.2 Exchange interaction……………………………….71
6.2.3 Activation energy…………………………………..73
6.3 Sample structure and experiments…………………….75
6.4 Results and discussion…………………………………76
6.5 Summary…………………………………………………….85
Chapter 7 “Mobility gap” of a spin-split GaAs two-dimensional electron system 87
7.1 Introduction………………………………………………88
7.2 Background…………………………………………………88
7.3 Sample structure and experiments…………………..90
7.4 Results and discussion…………………………………91
7.5 Summary…………………………………………………….95
Chapter 8 Conclusions 99
dc.language.isoen
dc.title二維砷化鎵電子系統之傳輸特性zh_TW
dc.titleTransport properties in two-dimensional GaAs electron systemsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳永芳,張顏暉,孫允武,林秀豪
dc.subject.keyword砷化鎵,量子霍爾效應,相變,霍爾絕緣體,電子自旋,zh_TW
dc.subject.keywordGaAs,quantum Hall effect,phase transition,Hall insulator,spin,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2005-06-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved