請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38799
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林仁混(Jen-Kun Lin) | |
dc.contributor.author | Tsung-Pang Lin | en |
dc.contributor.author | 林宗邦 | zh_TW |
dc.date.accessioned | 2021-06-13T16:46:47Z | - |
dc.date.available | 2006-07-11 | |
dc.date.copyright | 2005-07-11 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-06-28 | |
dc.identifier.citation | PART 1. REFERENCES
1. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1999. CA Cancer J Clin 1999;49(1):8-31, 31. 2. Soh S, Kattan MW, Berkman S, Wheeler TM, Scardino PT. Has there been a recent shift in the pathological features and prognosis of patients treated with radical prostatectomy? J Urol 1997;157(6):2212-2218. 3. Griffiths K, Eaton CL, Harper ME, Turkes A, Peeling WB. Hormonal treatment of advanced disease: some newer aspects. Semin Oncol 1994;21(5):672-687. 4. Ruijter E, van de Kaa C, Miller G, Ruiter D, Debruyne F, Schalken J. Molecular genetics and epidemiology of prostate carcinoma. Endocr. Rev. 1999;20(1):22–45. 5. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci 1994;91(24):11733-11737. 6. Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visakorpi T, Kallioniemi OP. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997;57(2):314-319. 7. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 1995;16(3):271-321. 8. Marcelli M, Ittmann M, Mariani S, Sutherland R, Nigam R, Murthy L, Zhao Y, DiConcini D, Puxeddu E, Esen A, Eastham J, Weigel NL, Lamb DJ. Androgen receptor mutations in prostate cancer. Cancer Res 2000;60(4):944-949. 9. McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999;20(3):321-344. 10. Adachi M, Takayanagi R, Tomura A, Imasaki K, Kato S, Goto K, Yanase T, Ikuyama S, Nawata H. Androgen-insensitivity syndrome as a possible coactivator disease. N Engl J Med 2000;343(12):856-862. 11. McGuire WL, Chamness GC, Fuqua SA. Estrogen receptor variants in clinical breast cancer. Mol Endocrinol 1991;5(11):1571-1577. 12. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994;54(20):5474-5478. 13. Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999;5(3):280-285. 14. Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci 1999;96(10):5458-5463. 15. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997;275(5308):1943-1947. 16. Wen Y, Hu MC, Makino K, Spohn B, Bartholomeusz G, Yan DH, Hung MC. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 2000;60(24):6841-1845. 17. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, Tu SM, Campbell ML. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992;52(24):6940-6944. 18. Colombel M, Symmans F, Gil S, O'Toole KM, Chopin D, Benson M, Olsson CA, Korsmeyer S, Buttyan R. Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am J Pathol 1993;143(2):390-400. 19. Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT. Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clin Cancer Res 1996;2(2):389-398. 20. Isaacs JT. The biology of hormone refractory prostate cancer. Why does it develop? Urol Clin North Am 1999;26(2):263-273. 21. Denmeade SR, Lin XS, Isaacs JT. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 1996;28(4):251-265. 22. Nemeth JA, Yousif R, Herzog M et al. Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst 2002;94(1):17-25. 23. Kim SJ, Uehara H, Yazici S et al. Simultaneous blockade of platelet-derived growth factor-receptor and epidermal growth factor-receptor signaling and systemic administration of paclitaxel as therapy for human prostate cancer metastasis in bone of nude mice. Cancer Res 2004;64(12):4201-4208. 24. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;1:571-573. 25. Moses MA, Wiederschain D, Loughlin KR, Zurakowski D, Lamb CC, Freeman MR. Increased incidence of matrix metalloproteinases in urine of cancer patients. Cancer Res 1998;58(7):1395-1399. 26. Uehara H, Kim SJ, Karashima T et al. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst 2003;95(6):458-470. 27. London CA, Sekhon HS, Arora V, Stein DA, Iversen PL, Devi GR. A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther 2003;10(11):823-832. 28. Hou X, Johnson AC, Rosner MR. Induction of epidermal growth factor receptor gene transcription by transforming growth factor beta 1: association with loss of protein binding to a negative regulatory element. Cell Growth Differ 1994;5(8):801-809. 29. Saha D, Datta PK, Sheng H et al. Synergistic induction of cyclooxygenase-2 by transforming growth factor-beta1 and epidermal growth factor inhibits apoptosis in epithelial cells. Neoplasia 1999;1(6):508-517. 30. Vinals F, Pouyssegur J. Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol 2001;21(21):7218-7230. 31. Koeneman KS, Yeung F, Chung LW. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 1999;39(4):246-261. 32. Thalmann GN, Sikes RA, Wu TT et al. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 2000;44(2):91-103 Jul 101;144(102). 33. Wu TT, Sikes RA, Cui Q et al. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer 1998;77(6):887-894. 34. Chung LW. Prostate carcinoma bone-stroma interaction and its biologic and therapeutic implications. Cancer 2003;97(3 Suppl):772-778. 35. Dorai T, Dutcher JP, Dempster DW, Wiernik PH. Therapeutic potential of curcumin in prostate cancer--V: Interference with the osteomimetic properties of hormone refractory C4-2B prostate cancer cells. Prostate 2004;60(1):1-17. 36. Gonzalez EA, Disthabanchong S, Kowalewski R, Martin KJ. Mechanisms of the regulation of EGF receptor gene expression by calcitriol and parathyroid hormone in UMR 106-01 cells. Kidney Int 2002;61(5):1627-1634. 37. Lee HH, Ho CT, Lin JK. Theaflavin-3,3'-digallate and penta-O-galloyl-beta-D-glucose inhibit rat liver microsomal 5alpha-reductase activity and the expression of androgen receptor in LNCaP prostate cancer cells. Carcinogenesis 2004;25(7):1109-1118. Epub 2004 Feb 1112. 38. Feldman KS, Sahasrabudhe K, Lawlor MD, Wilson SL, Lang CH, Scheuchenzuber WJ. In vitro and In vivo inhibition of LPS-stimulated tumor necrosis factor-alpha secretion by the gallotannin beta-D-pentagalloylglucose. Bioorg Med Chem Lett 2001;11(14):1813-1815. 39. Adachi H, Konishi K, Horikoshi I. The effects of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose on rat liver mitochondrial respiration. Chem Pharm Bull (Tokyo) 1989;37(5):1341-1344. 40. Konishi K, Adachi H, Kita K, Horikoshi I. Inhibitory effects of galloylglucose on nicotinamide adenine dinucleotide dehydrogenases of the aerobic respiratory chain of Escherichia coli. Chem Pharm Bull (Tokyo) 1990;38(2):474-476. 41. Konishi K, Adachi H, Ishigaki N et al. Inhibitory effects of tannins on NADH dehydrogenases of various organisms. Biol Pharm Bull 1993;16(7):716-718. 42. Konishi K, Tanaka T. Inhibitory effects of tannins on the NADH dehydrogenase activity of bovine heart mitochondrial complex I. Biol Pharm Bull 1999;22(3):240-243. 43. Ono K, Sawada T, Murata Y et al. Pentagalloylglucose, an antisecretory component of Paeoniae radix, inhibits gastric H+, K(+)-ATPase. Clin Chim Acta 2000;290(2):159-167. 44. Hayashi T, Nagayama K, Arisawa M et al. Pentagalloylglucose, a xanthine oxidase inhibitor from a Paraguayan crude drug, 'Molle-i' (Schinus terebinthifolius). J Nat Prod 1989;52(1):210-211. 45. Cannell RJ, Farmer P, Walker JM. Purification and characterization of pentagalloylglucose, and alpha-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians. Biochem J 1988;255(3):937-941. 46. Goto H, Shimada Y, Akechi Y, Kohta K, Hattori M, Terasawa K. Endothelium-dependent vasodilator effect of extract prepared from the roots of Paeonia lactiflora on isolated rat aorta. Planta Med 1996;62(5):436-439. 47. Sugaya A, Suzuki T, Sugaya E, Yuyama N, Yasuda K, Tsuda T. Inhibitory effect of peony root extract on pentylenetetrazol-induced EEG power spectrum changes and extracellular calcium concentration changes in rat cerebral cortex. J Ethnopharmacol 1991;33(1-2):159-167. 48. Chen WJ, Chang CY, Lin JK. Induction of G1 phase arrest in MCF human breast cancer cells by pentagalloylglucose through the down-regulation of CDK4 and CDK2 activities and up-regulation of the CDK inhibitors p27(Kip) and p21(Cip). Biochem Pharmacol 2003;65(11):1777-1785. 49. Pan MH, Lin JH, Lin-Shiau SY, Lin JK. Induction of apoptosis by penta-O-galloyl-beta-D-glucose through activation of caspase-3 in human leukemia HL-60 cells. Eur J Pharmacol 1999;381(2-3):171-183. 50. Chen WJ, Lin JK. Induction of G1 arrest and apoptosis in human jurkat T cells by pentagalloylglucose through inhibiting proteasome activity and elevating p27Kip1, p21Cip1/WAF1, and Bax proteins. J Biol Chem 2004;279(14):13496-13505. Epub 12004 Jan 13415. 51. Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. Biochem Pharmacol 2000;59(4):357-367. 52. Ho LL, Chen WJ, Lin-Shiau SY, Lin JK. Penta-O-galloyl-beta-D-glucose inhibits the invasion of mouse melanoma by suppressing metalloproteinase-9 through down-regulation of activator protein-1. Eur J Pharmacol 2002;453(2-3):149-158. 53. Lin JH, Nonaka, G. and Nisjioka, I. Tannins and related compounds: XCIV. Isolation and characterization of seven new hydrolyzable tannins from the leaves of Macaranga tanarius (L.). Muell Agric Chem Pharm Bull 1990;38:1218–1223. 54. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1999;13(8):781-792. 55. Alwan HA, van Zoelen EJ, van Leeuwen JE. Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J Biol Chem 2003;278(37):35781-35790. Epub 32003 Jun 35726. 56. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin 2000;50(1):7-33. 57. Huggins C. Endocrine-induced regression of cancers. Cancer Res 1967;27(11):1925-1930. 58. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001;1(1):34-45. 59. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002;2(8):584-593. 60. Revilla M, Arribas I, Sanchez-Chapado M, Villa LF, Bethencourt F, Rico H. Total and regional bone mass and biochemical markers of bone remodeling in metastatic prostate cancer. Prostate 1998;35(4):243-247. 61. Akimoto S, Furuya Y, Akakura K, Ito H. Comparison of markers of bone formation and resorption in prostate cancer patients to predict bone metastasis. Endocr J 1998;45(1):97-104. 62. Takeuchi S, Arai K, Saitoh H, Yoshida K, Miura M. Urinary pyridinoline and deoxypyridinoline as potential markers of bone metastasis in patients with prostate cancer. J Urol 1996;156(5):1691-1695. 63. Zellweger T, Ninck C, Bloch M et al. Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer 2005;113(4):619-628. 64. Adam RM, Kim J, Lin J et al. Heparin-binding epidermal growth factor-like growth factor stimulates androgen-independent prostate tumor growth and antagonizes androgen receptor function. Endocrinology 2002;143(12):4599-4608. 65. Freeman MR. HER2/HER3 heterodimers in prostate cancer: Whither HER1/EGFR? Cancer Cell 2004;6(5):427-428. 66. Festuccia C, Guerra F, D'Ascenzo S, Giunciuglio D, Albini A, Bologna M. In vitro regulation of pericellular proteolysis in prostatic tumor cells treated with bombesin. Int J Cancer 1998;75(3):418-431. 67. Shukla S, Gupta S. Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes. Clin Cancer Res 2004;10(9):3169-3178. 68. Andela VB, Gordon AH, Zotalis G et al. NFkappaB: a pivotal transcription factor in prostate cancer metastasis to bone. Clin Orthop Relat Res 2003(415 Suppl):S75-85. 69. Troppmair J, Hartkamp J, Rapp UR. Activation of NF-kappa B by oncogenic Raf in HEK 293 cells occurs through autocrine recruitment of the stress kinase cascade. Oncogene 1998;17(6):685-690. 70. Lee FS, Hagler J, Chen ZJ, Maniatis T. Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 1997;88(2):213-222. 71. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996;87(3):565-576. 72. Seth D, Shaw K, Jazayeri J, Leedman PJ. Complex post-transcriptional regulation of EGF-receptor expression by EGF and TGF-alpha in human prostate cancer cells. Br J Cancer 1999;80(5-6):657-669. 73. Jarrard DF, Blitz BF, Smith RC, Patai BL, Rukstalis DB. Effect of epidermal growth factor on prostate cancer cell line PC3 growth and invasion.46-53. PART 2 REFERENCES 1. 陳韻如。台灣生物多樣性的損失—哪些資源正在損失?http://bc.zo.ntu.edu.tw/article/005.pdf 2. 顏仁德(2000)。外來種與放生問題。2000生物多樣性保育展望」會議。http://news.ngo.org.tw/issue/biotech/issue-biotech00111501.htm 3. 失序的自然——外來種特展 www.nmns.edu.tw/New/PubLib/NewsLetter/94/210/7.pdf 4. www.tari.gov.tw/techcd/其他/有害動物/蝸牛簡介.htm 5. http://ceiba3.cc.ntu.edu.tw/course/79ed06/molluscpic.doc 6. http://kdais.iyard.org/annual/88/88-072.doc 7. 謝慶芳 自然農藥有哪些 漢聲雜誌第92期 p132-133。 8. 陳文雄等 病蟲害防治資材 農作物有機栽培成果發表會專刊 台灣省台南區農業改良場編印 1997年6月,p60-65。 9. Bray HG, Thorpe WV. Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal 1954;1:27-52. 10. Yoshikawa M, Harada E, Murakami T, Matsuda H, Yamahara J, Murakami N. Camelliasaponins B1, B2, C1 and C2, new type inhibitors of ethanol absorption in rats from the seeds of Camellia japonica L. Chem Pharm Bull (Tokyo) 1994 ;42(3):742-744. 11. Sagesaka YM, Uemura T, Watanabe N, Sakata K, Uzawa J. A new glucuronide saponin from tea leaves (Camellia sinensis var.) Biosci Biotechnol Biochem 1994 ;58(11):2036-2040. 12. Kitagawa I, Hori K, Motozawa T, Murakami T, Yoshikawa M. Structures of new acylated oleanene-type triterpene oligoglycosides, theasaponins E1 and E2, from the seeds of tea plant, Camellia sinensis (L.) O. Kuntze. Chem Pharm Bull (Tokyo) 1998 ;46(12):1901-1906. 13. Murakami T, Nakamura J, Matsuda H, Yoshikawa M. Bioactive saponins and glycosides. XV. Saponin constituents with gastroprotective effect from the seeds of tea plant, Camellia sinensis L. var. assamica Pierre, cultivated in Sri Lanka: structures of assamsaponins A, B, C, D, and E. Chem Pharm Bull (Tokyo) 1999 ;47(12):1759-1764. 14. Sindambiwe JB, Calomme M, Geerts S, Pieters L, Vlietinck AJ, Vanden Berghe DA. Evaluation of biological activities of triterpenoid saponins from Maesa lanceolata. J Nat Prod 1998;61:585-590. 15. Kwak WJ, Han CK, Chang HW, Kim HP, Kang SS, Son KH. Loniceroside C, an antiinflammatory saponin from Lonicera japonica. Chem Pharm Bull 2003;51(3):333-335. 16 Sur P, Chaudhuri T, Vedasiromoni JR, Gomes A, Ganguly DK. Antiinflammatory and antioxidant property of saponins of tea [Camellia sinensis (L) O. Kuntze] root extract. Phytother Res 2001;15:174–176. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38799 | - |
dc.description.abstract | part1
根據行政院衛生署的統計資料,惡性腫瘤為台灣人民死亡原因的首位,其中,前列腺癌分居國人癌症死亡的第八位及男性癌症死亡的第七位,而且,前列腺癌的罹患率有逐年增加的趨勢。前列腺癌導致死亡的主因,在於施以荷爾蒙療法治療後,復發的前列腺癌產生了對荷爾蒙療法的抵抗性,形成非荷爾蒙依賴型的前列腺癌,此病灶的特性是極度具侵犯性,常常會轉移到身體的其他組織或器官,造成器官衰竭而死亡,目前對此症仍是束手無策。骨骼是前列腺癌轉移的眾多目標器官之一,經由前人的研究指出,前列腺癌轉移到骨骼上的機制,受到了許多生長因子與細胞激素的調節,此外,matrix metalloproteinases (MMPs) 也被發現在前列腺癌細胞的轉移上具有促進的功能,因此,若能抑制這些因子對前列腺癌細胞的作用,將有助於改善或治療荷爾蒙非依賴性的前列腺癌細胞的轉移。在本篇論文中,我們發現表皮生長因子可以誘導荷爾蒙非依賴性的前列腺癌細胞株PC-3在體外的轉移試驗中大量的轉移,而五沒食子酸葡萄糖酯 (5GG) 則能抑制表皮生長因子對PC-3細胞轉移的促進作用。進一步對PC-3細胞產生能分解胞外基質的酵素做檢驗,發現MMP-9可以受到表皮生長因子的調控,而5GG則能抑制表皮生長因子所促進的MMP-9表現。為了更進一步檢視5GG的作用機制,我們探討了與表皮生長因子相關的訊息傳遞路徑,結果發現,調控MMP-9表現的轉錄因子能夠被5GG抑制,c-jun N-terminal kinase 2 (JNK2) 也能被5GG所抑制,於是我們檢視最上游的表皮生長因子受體,結果發現此受體也會受到5GG的影響而降低其表現,使用抑制劑避免表皮生長因子受體被分解則能回復JNK2的磷酸化,這些結果顯示表皮生長因子可能是經由JNK2來控制MMP-9的表現,而5GG則是抑制在最上游的受體來達到抑制癌細胞轉移的效果。 part2 近年來,外來生物入侵所造成的災害正逐漸受到重視中,無論是農業的損失或是自然環境的破壞都造成相當大的損失,因此,對於外來物種的防治已經到了刻不容緩的地步。其中,原本由日本人引進台灣準備作為食材的非洲大蝸牛,由於適應力強、繁殖力旺盛,已經廣泛的分布在台灣各處了,他們最大的危害在於啃食作物的幼葉、嫩芽,造成作物生長遲滯、產量下降。由於使用化學藥品殺螺的成效並不顯著,而且容易造成環境污染,因此,目前科學家正嘗試使用天然的方法來達到抑制螺類生長的效果。苦茶渣溶液是農民傳統上用來抑制螺類的方法,其特徵是專一性高且可自然分解。本篇研究的目的即在利用科學的方法檢視苦茶渣做為殺螺劑的可行性及原理。我們發現苦茶渣溶液能有效的抑制蝸牛的行動力,並進而造成蝸牛的死亡。觀察其死亡時的特徵,可以發現其螺肉呈內縮脫水狀,推測可能是由於苦茶渣刺激其體表過度分泌黏液,使其失去水分而脫水死亡。接下來我們檢視苦茶渣溶液的細胞毒性,發現其只有在高濃度時才能造成細胞死亡,顯示其可能不是經由殺死蝸牛體表的細胞達到使蝸牛死亡的效果。另外,由於兒茶素是茶類中含量相當豐富的物質,因此我們也檢測了苦茶渣溶液中總兒茶素的含量,結果發現其兒茶素的含量也不高。追溯前人關於可殺螺的植物的研究,發現很多都將結果導向皂素的作用,也就是認為皂素洗去了蝸牛體表的黏液,使其脫水死亡。關於苦茶渣中所含皂素的相關研究還沒有相當清楚,因此未來可能的研究重點將放在苦茶渣皂素的定性實驗中。 | zh_TW |
dc.description.abstract | PART1
Prostate carcinoma is the most frequently diagnosed malignancy and the second leading cause of death in men in western world. Androgen-independent prostate cancer (AIPC), an untreatable and fatal malignancy, almost invariably develops subsequent to androgen ablation therapy in early stage prostate carcinoma. At present, there is no effective therapy for it. The metastasis of prostate cancer to bone is associated with a substantial bone matrix turnover. Matrix metalloproteinase-9 (MMP-9) plays roles in both normal bone remodeling and invasion and metastasis of prostate cancer. Bone matrix turnover and tumor cell proliferation are linked to each other in a positive feedback cycle that can be disrupted by inhibition of MMP activity. Additionally, EGF induces MMP-9 expression in many prostate cancer cells and its cognate receptor, EGFR, is proposed to be involved in the development of androgen-independent prostate cancer (AIPC). Penta-O-galloyl-β-D-glucose (5GG), a kind of galloylglucose, contains one glucose and esterified with five gallic acid on five hydroxyl groups of the glucose. It has been shown to exert several biological activities including anti-oxidation, induction of apoptosis and metastasis inhibition. In this study, we demonstrated that EGF-induced MMP-9 expression was inhibited by 5GG. Subsequently, we seek to figure out the signal transduction pathways involved in 5GG-mediated MMP-9 down-regulation under EGF stimulation. We found that NF-κB nuclear translocation was reduced. Therefore, we examined the signal transduction pathways that may be involved in regulating NF-κB nuclear translocation. We found that 5GG inhibited JNK1/2 phosphorylation but maintained Akt phosphorylation with minimal effect on ERK1/2 and p38 under EGF induction. Next, we checked the phosphorylation status of EGFR. Surprisingly, we found that 5GG down-regulated not only EGFR phosphorylation but also its protein level under EGF stimulation. By using proteasome and lysosome inhibitors, we demonstrated that this phenomenon resulted from 5GG-mediated EGFR protein degradation. Inhibition of MMP-9 and EGFR expression by 5GG may help reduce the frequency of prostate cancer bone metastasis and the development of AIPC. These findings make 5GG a therapeutic candidate for prostate cancer. Part2 The invading foreign species in Taiwan have caused tremendous losses in agriculture and economy. They also destroy the established ecology of Taiwan. One of these invading species is the African Giant snail, which eats up new leaves and buds of the crops. Efforts have been made to prevent the spread of snails but little effect is seen. In this study, we tried to investigate the conventional, naturally degradable oil tea pomace in inhibiting the activity of snails. We found that both two kinds of oil tea pomace water extracts were capable of killing snails, causing their over-secretion of surface mucus, thus dehydrated to death. We also found that these oil tea pomace water extracts were cytotoxic only at higher doses. Finally, we examined the total amount of phenols in these oil tea pomace water extracts. We found that they didn’t contain much amount of phenols, suggesting that the molluscicidal activity of oil tea pomace water extracts was not resulted from phenols. Overall, these information provided us some insights into the molluscicidal activity of oil tea pomace. However, the exact active component in oil tea pomace water extracts remained to be clarified, one possibility was the saponins. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:46:47Z (GMT). No. of bitstreams: 1 ntu-94-R92442006-1.pdf: 3389959 bytes, checksum: 300da70eb09de5fdbd26cca78b669f51 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Table of Content
Part I: Penta-O-galloyl-β-D-glucose Suppresses EGF-induced Invasion of Human Prostate Cancer PC-3 Cells through Inhibiting MMP-9 Expression and JNK Pathway Abstract in Chinese…………………………………………………………………1 Abstract in English………………………………………………………………….2 Introduction………………………………………………………………………….4 Materials and Methods……………………………………………………………..15 Cell Cultures and Drug Treatments………………………………………………..15 Materials and Antibodies………………………………………………………….15 MTT Assay………………………………………………………………………..16 In vitro Invasion Assay……………………………………………………………16 Preparation of Nuclear and Cytosolic Fractions…………………………………..17 Western Blot Analysis…………………………………………………………….18 Results……………………………………………………………………………….19 Inhibition of 5GG on EGF-induced Invasion of PC-3 Cells………………………19 Low Cytotoxicity of 5GG on PC-3 Prostate Cancer Cells………………………...19 Inhibition of 5GG on EGF-induced MMP-9 Expression in PC-3 Cells…………..20 Down-regulation of EGF-induced NF-κB Nuclear Translocation by 5GG……….20 Inhibition of 5GG on EGF-induced JNK2 Phosphorylation………………………21 Inhibition of 5GG on EGF-induced EGFR Phosphorylation and Expression…….22 Involvement of proteasome and lysosome in 5GG-mediated EGFR Down-regulation…………………………………………………………………..23 Involvement of EGFR and JNK1/2 in 5GG-mediated MMP-9 Down-regulation...24 Discussion……………………………………………………………………………25 References…………………………………………………………………………...31 List of Figures……………………………………………………………………….40 Appendix…………………………………………………………………………….49 Part II: Study on the Inhibitory Effect of Oil Tea Pomace Water Extract on Snails. Abstract in Chinese…………………………………………………………………56 Abstract in English………………………………………………………………….57 Introduction…………………………………………………………………………58 Materials and Methods……………………………………………………………..60 Materials and Cell Line……………………………………………………………60 Snail Mobility Assay………………………………………………………………60 Snail Fatality Assay………………………………………………………………..60 MTT Assay………………………………………………………………………...61 Total Catechin Analysis…………………………………………………………...61 Results……………………………………………………………………………….63 Effects of oil tea pomace water extract on the mobility of snails…………………63 Effects of oil tea pomace water extract on the fatality of snails…………………..64 Effects of oil tea pomace water extract from different sources on the fatality of snails……………………………………………………………………………….64 Cytotoxic effect of oil tea pomace water extract on MCF-7 human breast cancer cells………………………………………………………………………………...65 Total phenols in oil tea pomace water extract…………………...………………...65 Discussion……………………………………………………………………………66 References…………………………………………………………………………...69 List of Figures……………………………………………………………………….72 | |
dc.language.iso | en | |
dc.title | 五沒食子酸葡萄糖酯抑制人類前列腺癌細胞轉移之研究 | zh_TW |
dc.title | Part I:Penta-O-galloyl-β-D-glucose Suppresses EGF-induced Invasion of Human Prostate Cancer PC-3 Cells through Inhibiting MMP-9 Expression and JNK Pathway Part II: Study on the Inhibitory Effect of Oil Tea Pomace Water Extract on Snails | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭水銀(Shoei-Yn Lin-Shiau),張明富(Ming-Fu Chang),王朝鐘(Chau-Jong Wang),李宣佑(Shuan-Yow Li) | |
dc.subject.keyword | 前列腺癌,五沒食子酸葡萄糖酯,轉移,表皮生長因子, | zh_TW |
dc.subject.keyword | prostate,5GG,EGF,MMP-9,metastasis,snail,oil tea,saponin, | en |
dc.relation.page | 75 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-06-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 3.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。