請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38751完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭德盛(Te-Son Kuo) | |
| dc.contributor.author | Fang-Chen Wu | en |
| dc.contributor.author | 吳芳宸 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:44:40Z | - |
| dc.date.available | 2014-07-25 | |
| dc.date.copyright | 2011-07-25 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-16 | |
| dc.identifier.citation | [1] N. Stroebele, et al., 'Knowledge of risk factors, and warning signs of stroke: a systematic review from a gender perspective,' International Journal of Stroke, vol. 6, pp. 60-66, Feb 2011.
[2] 'World Health Organization.,' http://www.who.int/en/, 2011. [3] J. W. Burke, et al., 'Serious games for upper limb rehabilitation following stroke,' 2009, pp. 103-110. [4] G. Alon, et al., 'Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study,' Neurorehabil Neural Repair, vol. 21, pp. 207-15, May-Jun 2007. [5] S. Kumar, et al., 'Medical complications after stroke,' The Lancet Neurology, vol. 9, pp. 105-118, 2010. [6] M. L. Hackett, et al., 'Frequency of depression after stroke: a systematic review of observational studies,' Stroke, vol. 36, pp. 1330-40, Jun 2005. [7] S. L. Wolf, et al., 'Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial,' The Lancet Neurology, vol. 7, pp. 33-40, 2008. [8] A. C. Lo, et al., 'Robot-assisted therapy for long-term upper-limb impairment after stroke,' N Engl J Med, vol. 362, pp. 1772-1783, 2010. [9] G. Yavuzer, et al., 'Mirror therapy improves hand function in subacute stroke: a randomized controlled trial,' Archives of Physical Medicine and Rehabilitation, vol. 89, pp. 393-398, 2008. [10] S. Westwater-Wood, et al., 'The use of proprioceptive neuromuscular facilitation in physiotherapy practice,' Physical Therapy Reviews, vol. 15, pp. 23-28, 2010. [11] S. Blanton, et al., 'Constraint-induced movement therapy in stroke rehabilitation: perspectives on future clinical applications,' Neurorehabilitation, vol. 23, pp. 15-28, 2008. [12] K. T. Ragnarsson, 'Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions,' Spinal Cord, vol. 46, pp. 255-74, Apr 2008. [13] H. C. Lo, et al., 'Effects of a functional electrical stimulation-assisted leg-cycling wheelchair on reducing spasticity of patients after stroke,' Journal of Rehabilitation Medicine, vol. 41, pp. 242-246, 2009. [14] R. Berkelmans, 'Fes cycling,' Journal of Automatic Control, vol. 18, pp. 73-76, 2008. [15] S. Barreca, et al., 'Treatment interventions for the paretic upper limb of stroke survivors: a critical review,' Neurorehabilitation and Neural Repair, vol. 17, p. 220, 2003. [16] J. Chae and D. Yu, 'Neuromuscular stimulation for motor relearning in hemiplegia,' Critical Reviews(tm) in Physical and Rehabilitation Medicine, vol. 11, 1999. [17] J. De Kroon, et al., 'Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review,' Clinical rehabilitation, vol. 16, p. 350, 2002. [18] T. J. Kimberley, et al., 'Electrical stimulation driving functional improvements and cortical changes in subjects with stroke,' Experimental Brain Research, vol. 154, pp. 450-60, Feb 2004. [19] J. R. de Kroon, et al., 'Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke,' Journal of Rehabilitation Medicine, vol. 37, pp. 65-74, Mar 2005. [20] J. S. Petrofsky and R. Stacy, 'The effect of training on endurance and the cardiovascular responses of individuals with paraplegia during dynamic exercise induced by functional electrical stimulation,' Eur J Appl Physiol Occup Physiol, vol. 64, pp. 487-92, 1992. [21] M. S. Nash, et al., 'Effects of electrically-stimulated exercise and passive motion on echocardiographically-derived wall motion and cardiodynamic function in tetraplegic persons,' Paraplegia, vol. 33, pp. 80-9, Feb 1995. [22] N. A. Hamzaid, et al., 'Development of an isokinetic FES leg stepping trainer (iFES-LST) for individuals with neurological disability,' pp. 480-485. [23] T. A. Thrasher, et al., 'Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy,' Neurorehabilitation and Neural Repair, vol. 22, p. 706, 2008. [24] T. A. Thrasher, et al., 'Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy,' Neurorehabil Neural Repair, vol. 22, pp. 706-14, Nov-Dec 2008. [25] J. Kowalczewski, et al., 'Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery,' Arch Phys Med Rehabil, vol. 88, pp. 833-9, Jul 2007. [26] R. N. Barker, et al., 'Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial,' Stroke, vol. 39, pp. 1800-7, Jun 2008. [27] A. Hughes, et al., 'Upper Limb Rehabilitation of Stroke Participants using Electrical Stimulation: Changes in Tracking and EMG Timing (best paper prize),' 2009. [28] A. M. Hughes, et al., 'Upper limb rehabilitation of stroke participants using electrical stimulation: Changes in tracking and EMG timing,' in Rehabilitation Robotics, 2009. ICORR 2009. IEEE International Conference on, 2009, pp. 59-65. [29] C. Cunningham, et al., 'Bilateral facilitation of motor control in chronic hemiplegia,' Acta psychologica, vol. 110, pp. 321-337, 2002. [30] S. McCombe Waller and J. Whitall, 'Bilateral arm training: why and who benefits?,' Neurorehabilitation, vol. 23, pp. 29-41, 2008. [31] M. E. Stoykov and D. M. Corcos, 'A review of bilateral training for upper extremity hemiparesis,' Occup Ther Int, vol. 16, pp. 190-203, 2009. [32] R. Sleimen-Malkoun, et al., 'Bimanual Training in stroke: How do coupling and symmetry-breaking matter?,' BMC neurology, vol. 11, p. 11, 2011. [33] J. H. Cauraugh and J. J. Summers, 'Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke,' Progress in neurobiology, vol. 75, pp. 309-320, 2005. [34] J. Duque, et al., 'Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement,' Cereb Cortex, vol. 15, pp. 588-93, May 2005. [35] E. A. Franz, et al., 'Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients,' Psychological Science, vol. 7, pp. 306-310, Sep 1996. [36] K. C. Stewart, et al., 'Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis,' Journal of the neurological sciences, vol. 244, pp. 89-95, 2006. [37] T. Matsuda, et al., 'A Comparison of Three Bimanual Coordinations: An fMRI Study,' Journal of Physical Therapy Science, vol. 21, pp. 85-92, 2009. [38] L. JaEnckea, et al., 'fMRI study of bimanual coordination,' Neuropsychologia, vol. 38, p. 174, 2000. [39] F. Debaere, et al., 'Changes in brain activation during the acquisition of a new bimanual coordination task,' Neuropsychologia, vol. 42, pp. 855-867, 2004. [40] J. Whitall, et al., 'Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke,' Stroke, vol. 31, pp. 2390-2395, Oct 2000. [41] J. H. Morris, et al., 'A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: a randomized controlled trial,' Arch Phys Med Rehabil, vol. 89, pp. 1237-45, Jul 2008. [42] M. E. Stoykov, et al., 'Comparison of Bilateral and Unilateral Training for Upper Extremity Hemiparesis in Stroke,' Neurorehabilitation and Neural Repair, vol. 23, pp. 945-953, Nov-Dec 2009. [43] M. Stoykov, et al., 'Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke,' Neurorehabilitation and Neural Repair, 2009. [44] K. C. Lin, et al., 'The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study,' Neurorehabil Neural Repair, vol. 24, pp. 42-51, Jan 2010. [45] J. H. Cauraugh, et al., 'Coupled bilateral movements and active neuromuscular stimulation: Intralimb transfer evidence during bimanual aiming,' Neuroscience Letters, vol. 382, pp. 39-44, Jul 1 2005. [46] J. S. Knutson, et al., 'A Novel Functional Electrical Stimulation Treatment for Recovery of Hand Function in Hemiplegia: 12-Week Pilot Study,' Neurorehabilitation and Neural Repair, vol. 23, pp. 17-25, Jan 2009. [47] M. K. L. Chan, et al., 'Bilateral Upper Limb Training With Functional Electric Stimulation in Patients With Chronic Stroke,' Neurorehabilitation and Neural Repair, vol. 23, pp. 357-365, May 2009. [48] M. B. Popovic, 'Control of neural prostheses for grasping and reaching,' Medical Engineering & Physics, vol. 25, pp. 41-50, Jan 2003. [49] R. N. Barker, et al., 'Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device - A randomized clinical trial,' Stroke, vol. 39, pp. 1800-1807, Jun 2008. [50] C. Y. Wu, et al., 'Effects of task goal and personal preference on seated reaching kinematics after stroke,' Stroke, vol. 32, pp. 70-76, Jan 2001. [51] W. J. Veldkamp, et al., 'Digital slot-scan charge-coupled device radiography versus AMBER and Bucky screen-film radiography: comparison of image quality in a phantom study,' Radiology, vol. 235, pp. 857-66, Jun 2005. [52] J. R. de Kroon, et al., 'Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review,' Clin Rehabil, vol. 16, pp. 350-60, Jun 2002. [53] Y. Hara, 'Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients,' J Nippon Med Sch, vol. 75, pp. 4-14, Feb 2008. [54] S. Hamdy, et al., 'Long-term reorganization of human motor cortex driven by short-term sensory stimulation,' Nat Neurosci, vol. 1, pp. 64-8, May 1998. [55] E. D. Vidoni and L. A. Boyd, 'Preserved motor learning after stroke is related to the degree of proprioceptive deficit,' Behav Brain Funct, vol. 5, p. 36, 2009. [56] P. Sjolander, et al., 'Sensorimotor disturbances in chronic neck pain - Range of motion, peak velocity, smoothness of movement, and repositioning acuity,' Manual Therapy, vol. 13, pp. 122-131, Apr 2008. [57] K. L. Gao, et al., 'Eye-Hand Coordination and Its Relationship with Sensorimotor Impairments in Stroke Survivors,' Journal of Rehabilitation Medicine, vol. 42, pp. 368-373, Apr 2010. [58] J. L. Alberts, et al., 'Disruptions in the reach-to-grasp actions of Parkinson's patients,' Experimental Brain Research, vol. 134, pp. 353-362, Oct 2000. [59] T. Platz, et al., 'Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study,' Clinical rehabilitation, vol. 19, pp. 404-411, Jun 2005. [60] M. L. Woodbury, et al., 'Longitudinal stability of the Fugl-Meyer Assessment of the upper extremity,' Archives of Physical Medicine and Rehabilitation, vol. 89, pp. 1563-1569, 2008. [61] M. H. Rabadi and F. M. Rabadi, 'Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke,' Archives of Physical Medicine and Rehabilitation, vol. 87, pp. 962-966, 2006. [62] A. K. Y. Ng, et al., 'Clinical Utility of the Action Research Arm Test, the Wolf Motor Function Test and the Motor Activity Log for Hemiparetic Upper Extremity Functions After Stroke: A Pilot Study,' Hong Kong Journal of Occupational Therapy, vol. 18, pp. 20-27, 2008. [63] J. H. van der Lee, et al., 'The intra-and interrater reliability of the action research arm test: A practical test of upper extremity function in patients with stroke* 1,' Archives of Physical Medicine and Rehabilitation, vol. 82, pp. 14-19, 2001. [64] G. Uswatte, et al., 'The Motor Activity Log-28,' Neurology, vol. 67, p. 1189, 2006. [65] G. Uswatte, et al., 'Reliability and validity of the upper-extremity Motor Activity Log-14 for measuring real-world arm use,' Stroke, vol. 36, p. 2493, 2005. [66] A. M. Hammer and B. Lindmark, 'Responsiveness and validity of the Motor Activity Log in patients during the subacute phase after stroke,' Disability & Rehabilitation, vol. 32, pp. 1184-1193, 2010. [67] M. B. Popovic, 'Control of neural prostheses for grasping and reaching,' Med Eng Phys, vol. 25, pp. 41-50, Jan 2003. [68] W. D. Byblow and C. M. Stinear, 'Modulation of short-latency intracortical inhibition in human primary motor cortex during synchronised versus syncopated finger movements,' Experimental Brain Research, vol. 168, pp. 287-293, 2006. [69] J. W. Stinear and W. D. Byblow, 'Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements,' Journal of Physiology-London, vol. 543, pp. 307-316, Aug 15 2002. [70] S. J. Ackerley, et al., 'The effect of coordination mode on use-dependent plasticity,' Clinical Neurophysiology, vol. 118, pp. 1759-1766, Aug 2007. [71] M. K. Chan, et al., 'Bilateral upper limb training with functional electric stimulation in patients with chronic stroke,' Neurorehabil Neural Repair, vol. 23, pp. 357-65, May 2009. [72] M. C. Ridding, et al., 'Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects,' Experimental Brain Research, vol. 131, pp. 135-43, Mar 2000. [73] C. Xerri, et al., 'Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys,' Journal of Neurophysiology, vol. 79, pp. 2119-2148, Apr 1998. [74] J. H. Cauraugh and S. Kim, 'Two coupled motor recovery protocols are better than one - Electromyogram-triggered neuromuscular stimulation and bilateral movements,' Stroke, vol. 33, pp. 1589-1594, Jun 2002. [75] J. S. Knutson, et al., 'A novel functional electrical stimulation treatment for recovery of hand function in hemiplegia: 12-week pilot study,' Neurorehabil Neural Repair, vol. 23, pp. 17-25, Jan 2009. [76] B. E. Fisher and K. J. Sullivan, 'Activity-dependent factors affecting poststroke functional outcomes,' Top Stroke Rehabil, vol. 8, pp. 31-44, Autumn 2001. [77] S. Hesse, et al., 'Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers,' Stroke, vol. 36, pp. 1960-6, Sep 2005. [78] J. E. Sullivan and L. D. Hedman, 'A home program of sensory and neuromuscular electrical stimulation with upper-limb task practice in a patient 5 years after a stroke,' Phys Ther, vol. 84, pp. 1045-54, Nov 2004. [79] J. H. van der Lee, et al., 'Forced use of the upper extremity in chronic stroke patients - Results from a single-blind randomized clinical trial,' Stroke, vol. 30, pp. 2369-2375, Nov 1999. [80] V. Alfieri, 'Electrical Treatment of Spasticity - Reflex Tonic Activity in Hemiplegic Patients and Selected Specific Electrostimulation,' Scandinavian Journal of Rehabilitation Medicine, vol. 14, pp. 177-182, 1982. [81] J. Chae, et al., 'Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia,' Stroke, vol. 29, pp. 975-979, May 1998. [82] S. Hesse, et al., 'Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects,' Arch Phys Med Rehabil, vol. 84, pp. 915-20, Jun 2003. [83] S. Malhotra, et al., 'Spasticity, an impairment that is poorly defined and poorly measured,' Clinical rehabilitation, vol. 23, pp. 651-658, Jul 2009. [84] S. Mangold, et al., 'Motor Training of Upper Extremity With Functional Electrical Stimulation in Early Stroke Rehabilitation,' Neurorehabilitation and Neural Repair, vol. 23, pp. 184-190, Feb 2009. [85] S. E. Fasoli, et al., 'Robotic therapy for chronic motor impairments after stroke: Follow-up results,' Archives of Physical Medicine and Rehabilitation, vol. 85, pp. 1106-1111, Jul 2004. [86] J. J. Chang, et al., 'Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke,' Arch Phys Med Rehabil, vol. 88, pp. 1332-8, Oct 2007. [87] J. H. Cauraugh, et al., 'Coupled bilateral movements and active neuromuscular stimulation: intralimb transfer evidence during bimanual aiming,' Neurosci Lett, vol. 382, pp. 39-44, Jul 1-8 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38751 | - |
| dc.description.abstract | 腦血管意外,又稱為「中風」,是導致成人活動功能不便之主因。文獻指出,中風後可能出現上肢功能損傷並持續存在,患者日常生活會產生嚴重的負面影響,也伴隨一些因長期不活動而引發的併發症以及心理層面上的問題,對於醫療資源與人力照護的消耗都是很大的負擔。因此,臨床上許多復健治療嘗試更有效的介入,以提高中風患者上肢恢復之情形。在本研究中,我們嘗試結合雙側上肢運動訓練與功能性電刺激治療,發展雙滑軌系統平台同時合併功能性電刺激控制,應用於中風患者的手臂前伸練習, 共三十五中風受試者參與本研究,分為控制組(單純接受雙側上肢訓練)與實驗組(雙側上肢訓練結合功能性電刺激之合併訓練),為期三周之介入,二十三人完成實驗。根據實驗結果,中風患者接受合併訓練出現正面的臨床療效,實驗組在介入後患側上肢的動作學參數分析有顯著進步,臨床量表似乎存在進步的趨勢。未來,針對不同訓練劑量與介入時間會多加考慮,且設計更具功能性之運動訓練,以期增進臨床中風上肢復健效果。 | zh_TW |
| dc.description.abstract | Cerebral vascular disease (or stroke) is the main cause of disabilities in adults worldwide. Upper-limb dysfunction after stroke usually exists, leading to severe limits of motor capabilities as well as daily activities. Therefore, effective treatment interventions for upper-limb rehabilitation after stroke are needed. In this study, we attempt to combine BAT with FES applying to the post-stroke paretic arm. A linear guide platform with FES feedback control was developed to execute the training of bilateral reaching movements. 35 stroke subjects were recruited and divided into two groups (BAT with FES and BAT alone). 23 participants completed this experiment with 3-week intervention. According to the clinical results, a favorable trend toward improvement in experimental group (BAT with FES) existed after treatment and at follow-up. Comparing to the pre-test data, kinematic analyses confirmed significant improvement in the experimental group. In the future, various treatment doses as well as more functional approaches would also be considered for better effects of upper limb rehabilitation after stroke. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:44:40Z (GMT). No. of bitstreams: 1 ntu-100-R98945036-1.pdf: 3232992 bytes, checksum: 62a8d193f830fc7794c40a9429d72f48 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致 謝.... ii
摘 要.......... iii ABSTRACT ....... iv I. Background ............................. 1 A. Functional electrical stimulation therapy ............ 2 B. Therapeutic exercises with Functional Electrical Stimulation ....................... 3 C. Bilateral Arm Training ............... 8 1) Neural mechanisms ................ 9 2) Clinical studies .................. 12 D. Bilateral arm training with FES assistance ..................... 15 II. Study motivation ........................ 19 III. System design ......................... 21 A. Hardware ................................. 21 B. Software programming .................. 24 C. Safety and maximal participation ......... 29 IV. Experiment ......................... 32 A. Participants .............................. 32 B. Experimental protocol........................ 33 C. Assessment ............................. 36 D. Statistical analysis ............... 38 V. Results ................................ 39 A. Clinical outcomes ..................... 40 B. Kinematic analyses .................... 44 VI. Discussion ............................... 48 A. Clinical outcomes ........................ 48 B. Kinematic analyses ..................... 52 C. Limitations .............................. 52 VII. Conclusions ............................. 54 VIII. References ................................. 55 IX. Appendix ............................. 61 Fugl-Meyer Assessment in the upper extremity section (FMA-UE) – Chinese version (Deakin et al., 2003) ................................ 65 Action Research Arm Test (ARAT) (Provided by the internet Stroke center – www. stroke.com) .................................... 67 Motor Activity Log (MAL) – Chinese version (Uswatte et al., 2006)........................... 68 | |
| dc.language.iso | en | |
| dc.subject | 雙側上肢運動訓練 | zh_TW |
| dc.subject | 功能性電刺激控制 | zh_TW |
| dc.subject | 中風復健 | zh_TW |
| dc.subject | functional electrical stimulation (FES) control system | en |
| dc.subject | stroke rehabilitation | en |
| dc.subject | bilateral arm training (BAT) | en |
| dc.title | 雙側上肢運動訓練結合功能性電刺激應用於中風患者之臨床療效 | zh_TW |
| dc.title | Clinical Effects of Combined Bilateral Arm Training with Functional Electrical Stimulation in Patients after Stroke | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陸哲駒(Jer-Junn Luh),賴金鑫(Jin-Shin Lai) | |
| dc.contributor.oralexamcommittee | 陳友倫(Yu-luen Chen),鄭伯壎(Bor-Shiuan Cheng) | |
| dc.subject.keyword | 中風復健,雙側上肢運動訓練,功能性電刺激控制, | zh_TW |
| dc.subject.keyword | stroke rehabilitation,bilateral arm training (BAT),functional electrical stimulation (FES) control system, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
