請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38728
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張上淳(Shan-Chwen Chang) | |
dc.contributor.author | Hsuan-Ying Wang | en |
dc.contributor.author | 王楦霙 | zh_TW |
dc.date.accessioned | 2021-06-13T16:43:43Z | - |
dc.date.available | 2011-10-07 | |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-16 | |
dc.identifier.citation | 1. Nicodemo, A. and J.I.G. Paez, Antimicrobial therapy for Stenotrophomonas maltophilia infections. European Journal of Clinical Microbiology and Infectious Diseases, 2007. 26(4): p. 229-237.
2. Denton, M. and K.G. Kerr, Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clinical Microbiology Reviews, 1998. 11(1): p. 57. 3. Muder, R.R., et al., Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: a prospective, multicenter study of 91 episodes. Clinical Infectious Diseases, 1996. 22(3): p. 508-512. 4. Jucker, B.A., H. Harms, and A.J. Zehnder, Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J Bacteriol, 1996. 178(18): p. 5472-9. 5. Nicodemo, A., et al., In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. Journal of Antimicrobial Chemotherapy, 2004. 53(4): p. 604. 6. Tsiodras, S., et al., Clinical implications of Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole: a study of 69 patients at 2 university hospitals. Scandinavian journal of infectious diseases, 2000. 32(6): p. 651-656. 7. Friedman, N., et al., Bacteraemia due to Stenotrophomonas maltophilia: An Analysis of 45 Episodes. Journal of Infection, 2002. 45(1): p. 47-53. 8. Looney, W.J., M. Narita, and K. Muhlemann, Stenotrophomonas maltophilia: an emerging opportunist human pathogen. The Lancet Infectious Diseases, 2009. 9(5): p. 312-323. 9. Coenye, T., et al., Stenotrophomonas africana Drancourt et al. 1997 is a later synonym of Stenotrophomonas maltophilia (Hugh 1981) Palleroni and Bradbury 1993. International journal of systematic and evolutionary microbiology, 2004. 54(4): p. 1235. 10. Rosenthal, S., Sources of pseudomonas and acinetobacter species found in human culture materials. American Journal of Clinical Pathology, 1974. 62(6): p. 807. 11. Fisher, M.C., et al., Pseudomonas maltophilia bacteremia in children undergoing open heart surgery. JAMA: The Journal of the American Medical Association, 1981. 246(14): p. 1571. 12. Semel, J.D., et al., Pseudomonas maltophilia pseudosepticemia. The American Journal of Medicine, 1978. 64(3): p. 403-406. 13. Bottone, E.J., R.M. Madayag, and M.N. Qureshi, Acanthamoeba keratitis: synergy between amebic and bacterial cocontaminants in contact lens care systems as a prelude to infection. Journal of Clinical Microbiology, 1992. 30(9): p. 2447. 14. Donzis, P., et al., Microbial contamination of contact lens care systems. American Journal of Ophthalmology, 1987. 104(4): p. 325-333. 15. Midelfart, J., A. Midelfart, and L. Bevanger, Microbial contamination of contact lens cases among medical students. Eye & Contact Lens, 1996. 22(1): p. 21. 16. Wishart, M. and T. Riley, Infection with Pseudomonas maltophilia hospital outbreak due to contaminated disinfectant. The Medical journal of Australia, 1976. 2(19): p. 710. 17. Flaherty, J.P., et al., An outbreak of gram-negative bacteremia traced to contaminated O-rings in reprocessed dialyzers. Annals of Internal Medicine, 1993. 119(11): p. 1072. 18. Vanholder, R., E. Vanhaecke, and S. Ringoir, Pseudomonas septicemia due to deficient disinfectant mixing during reuse. The International journal of artificial organs, 1992. 15(1): p. 19. 19. VanCouwenberghe, C. and S. Cohen, Analysis of epidemic and endemic isolates of Xanthomonas maltophilia by contour-clamped homogeneous electric field gel electrophoresis. Infection Control and Hospital Epidemiology, 1994. 15(11): p. 691-696. 20. Villarino, M.E., et al., Risk factors for epidemic Xanthomonas maltophilia infection/colonization in intensive care unit patients. Infection Control and Hospital Epidemiology, 1992. 13(4): p. 201-206. 21. Pedersen, M., E. Marso, and M. Pickett, Nonfermentative bacilli associated with man. III. Pathogenicity and antibiotic susceptibility. American Journal of Clinical Pathology, 1970. 54(2): p. 178-92. 22. Department of Health, Ice cubes: infection caused by Xanthomonas maltophilia. Hazard (93) 42. Medical Services Directorate, Department of Health, London, United Kingdom, 1993. 23. Public Health Laboratory Service, Ice as a source of infection acquired in hospital. Communicable Disease Report. CDR Weekly, 1993. 3(53): p. 241. 24. Moffet, H.L., D. Allan, and T. Williams, Survival and dissemination of bacteria in nebulizers and incubators. Archives of Pediatrics and Adolescent Medicine, 1967. 114(1): p. 13. 25. Moffet, H.L. and T. Williams, Bacteria recovered from distilled water and inhalation therapy equipment. Archives of Pediatrics and Adolescent Medicine, 1967. 114(1): p. 7. 26. Klick, J.M. and G.C. du Moulin, An oxygen analyzer as a source of Pseudomonas. Anesthesiology, 1978. 49(4): p. 293. 27. Cameron, J.L., et al., Bacterial contamination of ambulance oxygen humidifer water reservoirs: A potential source of pulmonary infection. Annals of Emergency Medicine, 1986. 15(11): p. 1300-1302. 28. Oie, S. and A. Kamiya, Microbial contamination of brushes used for preoperative shaving. Journal of Hospital Infection, 1992. 21(2): p. 103-110. 29. Khardori, N., et al., Nosocomial infections due to Xanthomonas maltophilia (Pseudomonas maltophilia) in patients with cancer. Reviews of Infectious Diseases, 1990. 12(6): p. 997-1003. 30. Talon, D., et al., Typing of hospital strains of Xanthomonas maltophilia by pulsed-field gel electrophoresis. Journal of Hospital Infection, 1994. 27(3): p. 209-217. 31. Fabe, C., et al., Typage moleculaire par electrophorese en champ pulse de souches de Stenotrophomonas maltophilia isolees dans un service d'hematologie= Molecular typing by pulsed field gel electrophoresis of Stenotrophomonas maltophilia strains isolated in a department of Hematology. Pathologie et Biologie, 1996. 44(5): p. 435-441. 32. Malecka-Griggs, B. and D.J. Reinhardt, Direct dilution sampling, quantitation, and microbial assessment of open-system ventilation circuits in intensive care units. Journal of Clinical Microbiology, 1983. 17(5): p. 870. 33. Windhorst, S., et al., The Major Extracellular Protease of the Nosocomial PathogenStenotrophomonas maltophilia. Journal of Biological Chemistry, 2002. 277(13): p. 11042. 34. Bottone, E., et al., Pseudomonas maltophilia exoenzyme activity as correlate in pathogenesis of ecthyma gangrenosum. Journal of Clinical Microbiology, 1986. 24(6): p. 995. 35. Costerton, J., P.S. Stewart, and E. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science, 1999. 284(5418): p. 1318. 36. Fouhy, Y., et al., DSF-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. Journal of Bacteriology, 2007: p. JB. 00310-07v1. 37. Parr, M., K. Bertch, and R. Rapp, Amino acid stability and microbial growth in total parenteral nutrient solutions. American Journal of Health-System Pharmacy, 1985. 42(12): p. 2688. 38. MCKEE JR, K.T., et al., Gram-negative bacillary sepsis associated with use of lipid emulsion in parenteral nutrition. Archives of Pediatrics and Adolescent Medicine, 1979. 133(6): p. 649. 39. Ganadu, M., et al., Relapsing pyrogenic reactions due to Xanthomonas maltophilia in a dialysis patient with a long-term central venous catheter. Nephrology Dialysis Transplantation, 1996. 11(1): p. 197. 40. Gales, A., et al., Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY Antimicrobial Surveillance Program (1997-1999). Clinical Infectious Diseases, 2001: p. 104-113. 41. Elting, L.S. and G.P. Bodey, Septicemia due to Xanthomonas species and non-aeruginosa Pseudomonas species: increasing incidence of catheter-related infections. Medicine, 1990. 69(5): p. 296. 42. Morrison Jr, A., K. Hoffmann, and R. Wenzel, Associated mortality and clinical characteristics of nosocomial Pseudomonas maltophilia in a university hospital. Journal of Clinical Microbiology, 1986. 24(1): p. 52. 43. Marshall, W., et al. Xanthomonas maltophilia: an emerging nosocomial pathogen. 1989. 44. Vartivarian, S., et al., A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy. Antimicrobial Agents and Chemotherapy, 1994. 38(3): p. 624. 45. Davin-Regli, A., et al., Use of random amplified polymorphic DNA for epidemiological typing of Stenotrophomonas maltophilia. Journal of Hospital Infection, 1996. 32(1): p. 39-50. 46. Tan, C.K., et al., Extensively drug-resistant Stenotrophomonas maltophilia in a tertiary care hospital in Taiwan: microbiologic characteristics, clinical features, and outcomes. Diagnostic Microbiology and Infectious Disease, 2008. 60(2): p. 205-210. 47. Communicable Disease Surveillance Centre, Antimicrobial resistance in 2000: England and Wales. London: Public Health Laboratory Service, 2000. http://www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1194947317696. 48. Elting, L.S., et al., Nosocomial infection caused by Xanthomonas maltophilia: a case-control study of predisposing factors. Infection Control and Hospital Epidemiology, 1990. 11(3): p. 134-138. 49. Apisarnthanarak, A., et al., Risk factors for Stenotrophomonas maltophilia bacteremia in oncology patients: a case-control study. Infection Control and Hospital Epidemiology, 2003. 24(4): p. 269-274. 50. VanCouwenberghe, C.J., T.B. Farver, and S.H. Cohen, Risk factors associated with isolation of Stenotrophomonas (Xanthomonas) maltophilia in clinical specimens. Infection Control and Hospital Epidemiology, 1997. 18(5): p. 316-321. 51. Al-Anazi, K.A., A.M. Al-Jasser, and A. Al-Humaidhi, Bacteremia due to Stenotrophomonas Maltophilia in Patients with Hematological Malignancies. KUWAIT MEDICAL JOURNAL, 2006. 38(3): p. 214-219. 52. Victor, M.A., et al., Xanthomonas maltophilia bacteremia in immunocompromised hematological patients. Scandinavian Journal of Infectious Diseases, 1994. 26(2): p. 163-170. 53. Jang, T., et al., Xanthomonas maltophilia bacteremia: an analysis of 32 cases. Journal of the Formosan Medical Association= Taiwan yi zhi, 1992. 91(12): p. 1170. 54. Nseir, S., et al., Intensive care unit-acquired Stenotrophomonas maltophilia: incidence, risk factors, and outcome. Crit Care, 2006. 10(5): p. R143. 55. Calza, L., R. Manfredi, and F. Chiodo, Stenotrophomonas (Xanthomonas) maltophilia as an emerging opportunistic pathogen in association with HIV infection: a 10-year surveillance study. Infection, 2003. 31(3): p. 155-161. 56. Ansari, S.R., et al., Risk factors for infections with multidrug resistant Stenotrophomonas maltophilia in patients with cancer. Cancer, 2007. 109(12): p. 2615-2622. 57. Labarca, J.A., et al., Outbreak of Stenotrophomonas maltophilia bacteremia in allogenic bone marrow transplant patients: role of severe neutropenia and mucositis. Clinical Infectious Diseases, 2000. 30(1): p. 195-197. 58. Schaumann, R., et al., Infections caused by Stenotrophomonas maltophilia - a prospective study. Infection, 2001. 29(4): p. 205-208. 59. Micozzi, A., et al., Bacteremia due to Stenotrophomonas maltophilia in patients with hematologic malignancies. Clinical Infectious Diseases, 2000. 31(3): p. 705. 60. Wang, W.S., et al., Stenotrophomonas maltophilia bacteremia in adults: four years' experience in a medical center in northern Taiwan. Journal of microbiology, immunology, and infection= Wei mian yu gan ran za zhi, 2004. 37(6): p. 359. 61. Barchitta, M., et al., Acquisition and spread of Acinetobacter baumannii and Stenotrophomonas maltophilia in intensive care patients. International journal of hygiene and environmental health, 2009. 212(3): p. 330-337. 62. Senol, E., Stenotrophomonas maltophilia: the significance and role as a nosocomial pathogen. Journal of Hospital Infection, 2004. 57(1): p. 1-7. 63. Clinical Laboratory Standards Institute, Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement. CLSI document M100-S18, 2008. 64. Hawkey, P.M., et al., Effect of divalent cations in bacteriological media on the susceptibility of Xanthonwnas maltophilia to imipenem, with special reference to zinc ions. Journal of Antimicrobial Chemotherapy, 1993. 31(1): p. 47. 65. Felegie, T., et al., Susceptibility of Pseudomonas maltophilia to antimicrobial agents, singly and in combination. Antimicrobial Agents and Chemotherapy, 1979. 16(6): p. 833. 66. D'Amato, R.F., et al., Effect of calcium and magnesium ions on the susceptibility of Pseudomonas species to tetracycline, gentamicin polymyxin B, and carbenicillin. Antimicrobial Agents and Chemotherapy, 1975. 7(5): p. 596. 67. Clinical Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standards, M7-A4. 5th ed. 2000. 68. Hu, L.F., et al., Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. International Journal of Antimicrobial Agents, 2011. 69. Akova, M., G. Bonfiglio, and D. Livermore, Susceptibility to {beta}-lactam antibiotics of mutant strains of Xanthomonas maltophilia with high-and low-level constitutive expression of L1 and L2 {beta}-lactamases. Journal of Medical Microbiology, 1991. 35(4): p. 208. 70. Gould, V.C., A. Okazaki, and M.B. Avison, β-Lactam resistance and β-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. Journal of Antimicrobial Chemotherapy, 2006. 57(2): p. 199. 71. Alonso, A. and J.L. Martinez, Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2000. 44(11): p. 3079. 72. Alonso, A. and J.L. Martinez, Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2001. 45(6): p. 1879. 73. Li, X.Z., L. Zhang, and K. Poole, SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2002. 46(2): p. 333. 74. Chang, L.L., et al., Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 2004. 53(3): p. 518. 75. Ba, B.B., et al., Activities of ciprofloxacin and moxifloxacin against Stenotrophomonas maltophilia and emergence of resistant mutants in an in vitro pharmacokinetic-pharmacodynamic model. Antimicrobial Agents and Chemotherapy, 2004. 48(3): p. 946. 76. Rahmati-Bahram, A., J.T. Magee, and S.K. Jackson, Temperature-dependent aminoglycoside resistance in Stenotrophomonas (Xanthomonas) maltophilia; alterations in protein and lipopolysaccharide with growth temperature. Journal of Antimicrobial Chemotherapy, 1996. 37(4): p. 665. 77. Yilmaz, M., A.F. Celik, and A. Mert, Successfully treated nosocomial Stenotrophomonas maltophilia bacteremia following desensitization to trimethoprim-sulfamethoxazole. Journal of Infection and Chemotherapy, 2007. 13(2): p. 122-123. 78. Bryson, H.M. and R. Brogden, Piperacillin/tazobactam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs, 1994. 47(3): p. 506. 79. Fass, R.J. and R.B. Prior, Comparative in vitro activities of piperacillin-tazobactam and ticarcillin-clavulanate. Antimicrobial Agents and Chemotherapy, 1989. 33(8): p. 1268. 80. Spangler, S.K., et al., Susceptibilities of non-Pseudomonas aeruginosa gram-negative nonfermentative rods to ciprofloxacin, ofloxacin, levofloxacin, D-ofloxacin, sparfloxacin, ceftazidime, piperacillin, piperacillin-tazobactam, trimethoprim-sulfamethoxazole, and imipenem. Antimicrobial Agents and Chemotherapy, 1996. 40(3): p. 772. 81. Garcia-Rodriguez, J., et al., Antibiotic susceptibility profile of Xanthomonas maltophilia in vitro activity of [beta]-lactam/[beta]-lactamase inhibitor combinations. Diagnostic Microbiology and Infectious Disease, 1991. 14(3): p. 239-243. 82. Garcia-Rodriguez, J., et al., Kinetics of antimicrobial activity of aztreonam/clavulanic acid (2: 1) against Xanthomonas maltophilia. Journal of Antimicrobial Chemotherapy, 1991. 27(4): p. 552. 83. Weiss, K., et al., Comparative activity of new fluoroquinolones against 326 clinical isolates of Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 2000. 45(3): p. 363. 84. Rolston, K.V.I., et al., Nonfermentative gram-negative bacilli in cancer patients: increasing frequency of infection and antimicrobial susceptibility of clinical isolates to fluorofluoroquinolones. Diagnostic Microbiology and Infectious Disease, 2005. 51(3): p. 215-218. 85. Valdezate, S., et al., Comparative in vitro activity of fluoroquinolones against Stenotrophomonas maltophilia. European Journal of Clinical Microbiology and Infectious Diseases, 1999. 18(12): p. 908-911. 86. Garrison, M.W., et al., Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrobial Agents and Chemotherapy, 1996. 40(12): p. 2859. 87. Sader, H.S., et al., Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. Diagnostic Microbiology and Infectious Disease, 2005. 52(3): p. 203-208. 88. Insa, R., et al., In vitro activity of tigecycline against clinical isolates of Acinetobacter baumannii and Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 2007. 59(3): p. 583. 89. Gales, A.C., A.O. Reis, and R.N. Jones, Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. Journal of Clinical Microbiology, 2001. 39(1): p. 183. 90. Zelenitsky, S.A., et al., Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagnostic Microbiology and Infectious Disease, 2005. 51(1): p. 39-43. 91. Poulos, C., et al., In vitro activities of antimicrobial combinations against Stenotrophomonas (Xanthomonas) maltophilia. Antimicrobial Agents and Chemotherapy, 1995. 39(10): p. 2220. 92. Giamarellos-Bourboulis, E.J., L. Karnesis, and H. Giamarellou, Synergy of colistin with rifampin and trimethoprim/sulfamethoxazole on multidrug-resistant Stenotrophomonas maltophilia. Diagnostic Microbiology and Infectious Disease, 2002. 44(3): p. 259-263. 93. Laing, F., et al., Molecular epidemiology of Xanthomonas maltophilia colonization and infection in the hospital environment. Journal of Clinical Microbiology, 1995. 33(3): p. 513. 94. Betriu, C., et al., Antibiotic resistance surveillance of Stenotrophomonas maltophilia, 1993-1999. Journal of Antimicrobial Chemotherapy, 2001. 48(1): p. 152. 95. Sader, H.S. and R.N. Jones, Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. International Journal of Antimicrobial Agents, 2005. 25(2): p. 95-109. 96. Zhanel, G.G., et al., Antimicrobial susceptibility of 3931 organisms isolated from intensive care units in Canada: Canadian National Intensive Care Unit Study, 2005/2006. Diagnostic Microbiology and Infectious Disease, 2008. 62(1): p. 67-80. 97. Valdezate, S., et al., Antimicrobial susceptibilities of unique Stenotrophomonas maltophilia clinical strains. Antimicrobial Agents and Chemotherapy, 2001. 45(5): p. 1581. 98. Fedler, K.A., D.J. Biedenbach, and R.N. Jones, Assessment of pathogen frequency and resistance patterns among pediatric patient isolates: report from the 2004 SENTRY Antimicrobial Surveillance Program on 3 continents. Diagnostic Microbiology and Infectious Disease, 2006. 56(4): p. 427-436. 99. Travassos, L., et al., Phenotypic properties, drug susceptibility and genetic relatedness of Stenotrophomonas maltophilia clinical strains from seven hospitals in Rio de Janeiro, Brazil. Journal of Applied Microbiology, 2004. 96(5): p. 1143-1150. 100. San Gabriel, P., et al., Antimicrobial susceptibility and synergy studies of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis. Antimicrobial Agents and Chemotherapy, 2004. 48(1): p. 168. 101. Saiman, L., et al., Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrobial Agents and Chemotherapy, 2002. 46(4): p. 1105. 102. Gales, A., R. Jones, and H. Sader, Antimicrobial Susceptibility Profile of Contemporary Clinical Strains of Stenotrophomonas maltophilia Isolates: Can Moxifloxacin Activity Be Predicted by Levofloxacin MIC Results? Journal of Chemotherapy, 2008. 20(1): p. 38-42. 103. Gales, A., R. Jones, and H. Sader, Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of gram negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clinical Microbiology and Infection, 2006. 12(4): p. 315-321. 104. Chow, A.W., J. Wong, and K.H. Bartlett, Synergistic interactions of ciprofloxacin and extended-spectrum beta-lactams or aminoglycosides against multiply drug-resistant Pseudomonas maltophilia. Antimicrobial Agents and Chemotherapy, 1988. 32(5): p. 782. 105. Visalli, M.A., M.R. Jacobs, and P.C. Appelbaum, Activities of three fluoroquinolones, alone and in combination with extended-spectrum cephalosporins or gentamicin, against Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 1998. 42(8): p. 2002. 106. Isenberg, H.D., P. Alperstein, and K. France, In vitro activity of ciprofloxacin, levofloxacin, and trovafloxacin, alone and in combination with [beta]-lactams, against clinical isolates of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Burkholderia cepacia. Diagnostic Microbiology and Infectious Disease, 1999. 33(2): p. 81-86. 107. Dawis, M.A., et al., In vitro activity of gatifloxacin alone and in combination with cefepime, meropenem, piperacillin and gentamicin against multidrug-resistant organisms. Journal of Antimicrobial Chemotherapy, 2003. 51(5): p. 1203. 108. Tripodi, M., et al., Comparative activities of isepamicin, amikacin, cefepime, and ciprofloxacin alone or in combination with other antibiotics against Stenotrophomonas maltophilia. European Journal of Clinical Microbiology and Infectious Diseases, 2001. 20(1): p. 73-75. 109. Fung-Tomc, J., et al., Synergistic activity of the novel des-fluoro (6) quinolone, garenoxacin (BMS-284756), in combination with other antimicrobial agents against Pseudomonas aeruginosa and related species. International Journal of Antimicrobial Agents, 2002. 20(1): p. 57-60. 110. Senol, E., et al., Attributable mortality of Stenotrophomonas maltophilia bacteremia. Clinical Infectious Diseases, 2002: p. 1653-1656. 111. Lai, C.H., et al., Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia. J Microbiol Immunol Infect, 2004. 37(6): p. 350-8. 112. Wu, P.S., et al., Stenotrophomonas maltophilia bacteremia in pediatric patients-- a 10-year analysis. J Microbiol Immunol Infect, 2006. 39(2): p. 144-9. 113. Araoka, H., M. Baba, and A. Yoneyama, Risk factors for mortality among patients with Stenotrophomonas maltophilia bacteremia in Tokyo, Japan, 1996-2009. European Journal of Clinical Microbiology and Infectious Diseases, 2010. 29(5): p. 605-608. 114. Tsai, W.P., et al., Stenotrophomonas maltophilia bacteremia in burn patients. Burns, 2006. 32(2): p. 155-158. 115. Boktour, M., et al., Central venous catheter and Stenotrophomonas maltophilia bacteremia in cancer patients. Cancer, 2006. 106(9): p. 1967-1973. 116. Friedman, N.D., et al., Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Annals of Internal Medicine, 2002. 137(10): p. 791. 117. Valles, J., et al., Bloodstream infections in adults: importance of healthcare-associated infections. Journal of Infection, 2008. 56(1): p. 27-34. 118. Dellinger, R.P., et al., Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Medicine, 2008. 34(1): p. 17-60. 119. Mermel, L.A., et al., Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 2009. 49(1): p. 1. 120. Tseng, C.C., et al., Risk factors for mortality in patients with nosocomial Stenotrophomonas maltophilia pneumonia. Infection Control and Hospital Epidemiology, 2009. 30(12): p. 1193-1202. 121. Garcia Paez, J., et al., Factors associated with mortality in patients with bloodstream infection and pneumonia due to Stenotrophomonas maltophilia. European Journal of Clinical Microbiology and Infectious Diseases, 2008. 27(10): p. 901-906. 122. Paez, J. and S. Costa, Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia: a systematic review. Journal of Hospital Infection, 2008. 70(2): p. 101-108. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38728 | - |
dc.description.abstract | 背景:
近年來嗜麥芽寡養單胞菌菌血症(Stenotrophomonas maltophilia bacteremia)在世界各地發生的頻率逐漸增加,抗藥性也逐漸上升,再加上其所造成的高死亡率,使得尋找更好的抗生素治療更顯得格外重要。 目的: 研究臺大醫院造成嗜麥芽寡養單胞菌菌血症的危險因子,死亡率和預後因子,並分析不同的抗生素療法,包括單一或合併抗生素對治療結果的影響,以期能找出降低感染及感染後有效治療的方法。 研究設計、地點和對象: 本研究於國立台灣大學醫學院附設醫院,一家位於台灣北部的教學醫院,以病歷回顧進行單醫學中心回溯性研究,蒐集在2009年7月1日到2010年12月31日期間發生S. maltophilia 菌血症成年病人之資料進行分析,但若同一病人發生許多次S. maltophilia菌血症,只納入第一次事件。 研究方法: 從紙本或電子病歷蒐集病人基本資料、潛在疾病/合併症、菌血症前30天的各種感染和抗生素使用,以及各種可能造成感染的危險因子,包括菌血症前各種管路 (catheters)、侵入性處置或手術、免疫低下、長期住院等,並且紀錄S. maltophilia血液培養、敏感性試驗、菌血症後30天內的感染,此外還記錄S. maltophilia菌血症發作時的臨床症狀及併發症、相關檢驗數據、抗生素治療,發作後D7、D14、D30、出院時的治療結果。主要觀察終點為D14的死亡率。 統計方法包括Fisher’s exact test、χ2 test、T-test、Mann-Whitney U test,並且以單變項和多變項迴歸分析相關危險因子及D14、D30的預後因子。以Kaplan-Meier method繪製存活曲線,並用Log-rank test比較。 研究結果: 有102個感染S. maltophilia 菌血症之成年病人最後被納入分析中,其中52人屬於單一菌血症,其餘的50人是多重菌種感染,兩組平均年齡都約為60歲,男女比為61:41,院內感染的病人佔了大多數(87.3%),主要發生在普通病房(52.9%) 和加護病房(35.3%),感染源大多不明(58.8%),有26.5%的病人是由呼吸道轉移而來的菌血症,再來才是來自導管(14.7%)。Charlson’s comorbidity score中位數為4,合併症/潛在疾病中以血液疾病(80.4%)佔最大宗,其次是惡性腫瘤(71.6%),再來是心血管疾病(55.9%)和其他疾病。感染S. maltophilia菌血症的可能危險因子分析中有56.9%的人住院超過14天,有54.9%屬於免疫低下,在過去30天有92.2%的人使用過抗生素,有33.3%接受過手術,至於在發作前3天內有89.2%使用侵入性導管,使用呼吸器的有24.5%,氣切的有8.8%,使用全靜脈營養的則有19.6%。菌血症發作時病人Pitt bacteremia score中位數為2分,APACHE II score中位數為21分,發生併發症的有39.6%,以敗血性休克最多。 抗生素敏感性試驗結果發現aminoglycosides、carbapenems和monobactam幾乎都是呈現100%抗藥性,敏感性較好的抗生素主要包括co-trimoxazole、ceftazidime、ticarcillin/clavulanate、fluoroquinolones、minocycline。至於經驗性抗生素的適當性與使用適當抗生素的不同延遲時間都並未發現和病人的D14、D30死亡率有相關,也並未找出較好的單一或合併抗生素可以有較低的死亡率。 死亡率方面,感染S. maltophilia菌血症的全部病人在D14有35%的死亡率,在D30則高達47%,影響D14死亡的獨立危險因子是敗血性休克(OR=34.67, 95% CI= 6.79-176.91, p<0.0001),而與D30死亡相關的獨立危險因子是腎臟疾病(OR=13.71, 95% CI=1.31-143.44, p=0.0288)。 結論: 本研究中感染S. maltophilia菌血症的全部病人在D14有35%的死亡率,而在D30則有47%的死亡率。經驗性抗生素的適當性與使用適當抗生素的不同延遲時間都並未發現和D14、D30死亡率有顯著相關,本研究中也並未發現使用後有顯著較低的D14和D30死亡率的確切性抗生素。與D14和D30死亡相關的獨立危險因子分別是敗血性休克和腎臟疾病。 | zh_TW |
dc.description.abstract | Background
The frequency of Stenotrophomonas maltophilia bacteremia gradually increased in recent years in the world. Besides, the increasing resistance rate of Stenotrophomonas maltophilia to many antibiotics and the considerable mortality all contribute to the need of better antibiotic treatments. Objectives The objectives of this study are to investigate the risk factors, mortality, prognostic factors of Stenotrophomonas maltophilia bacteremia in National Taiwan University Hospital, and to analyze the treatment outcomes with different antibiotic regimens, including comparison of the treatment outcome with monotherapy versus combination therapy. With those data, we hope we can find a way to reduce the occurrence of S.maltophilia bacteremia and find the best treatment regimens. Study design and study population This is a single center retrospective study performed through review of medical charts of patients diagnosed and treated at National Taiwan University Hospital (NTUH), a teaching hospital in northern Taiwan. All adult patients who developed S. maltophilia bacteremia between July 1st , 2009 and December 31st , 2010 were included. If patients had multiple episodes of S. maltophilia during the study period, only the first episode was included in this study. Methods Data were collected from paper or electronic medical charts, including patient profiles, underlying diseases/comorbidities, any infection and antibiotic used within 30 days prior to S. maltophilia bacteremia, and risk factors of S. maltophilia bacteremia, such as catheters, invasive procedures, surgery, immunocompromised status, prolonged hospitalization, etc. Besides, blood culture, sensitivity test, infections within 30 days after S. maltophilia bacteremia onset, clinical presentation, complication, laboratory data, antibiotic treatment, and treatment outcomes on D7, D14, D30, Day of discharge were recorded. The primary endpoint is the D14 mortality. Statistical methods included Fisher’s exact test, χ2 test, T-test, Mann-Whitney U test. Risk factors and prognostic factors attributing to D14, D30 mortality were analyzed by univariate and multivariate logistic regression. Survival curves were drawn by Kaplan-Meier method and compared by Log-rank test. Results One hundred and two patients with S. maltophilia bacteremia were included in the analysis. Among these, 52 were monomicrobial bacteremia and the other 50 were polymicrobial. The mean age was 60.1 years old, and the ratio of male to female was 61:41. Most patients were nosocomial infection (87.3%), and 52.9% of bacteremia onset occurred in general wards, 35.3% in intensive care units. Source of infection was unknown in 58.8% of the patients, and 26.5% was from respiratory tracts and 14.7% was from catheters. The median Charlson’s comorbidity score was 4, and the most common underlying diseases/comorbidity was hematological diseases (80.4%), and then malignancy (71.6%), cardiovascular diseases (55.9%). In the analysis of risk factors associated with S. maltophilia bacteremia, 56.9% patients were prolonged hospitalization (>14 days), 54.9% immunocompromised, 92.2% using antibiotics within 30 days before onset, 33.3% receiving surgery, 89.2% with invasive catheters within 3 days before onset, 24.5% with ventilators, 8.8% tracheostomy, 19.6% with total parenteral nutrition. When bacteremia onset, the median Pitt bacteremia score was 2, and the median APACHE II score was 21. Complications occurred in 39.6% of the patients. The most common complication was septic shock. S. maltophilia was almost 100% resistant to aminoglycosides, carbapenems and monobactam in the susceptibility tests. Better sensitivity appeared with co-trimoxazole, ceftazidime, ticarcillin/clavulanate, fluoroquinolones and minocycline. As to the appropriateness of empirical antibiotic and different delaying times to appropriate antibiotics, there was no significant difference for D14 and D30 mortality. Besides, there was no significantly better monotherapy or combination therapy found to be associated with lower mortality. As to the mortality analysis, the D14 mortality rate of all 102 patients was 35%, and the D30 mortality was 47%. Independent risk factors associated with D14 mortality was septic shock (OR=34.67, 95% CI= 6.79-176.91, p<0.0001) and with D30 mortality was renal diseases (OR=13.71, 95% CI=1.31-143.44, p=0.0288). Conclusions In this study, the D14 and D30 mortality rate in total patients were 35% and 47%, respectively. The appropriateness of empirical antibiotics and different delaying times to appropriate antibiotics were not found to significantly affect D14 and D30 mortality. There was no better definitive antibiotic found to be associated with lower D14 and D30 mortality. The independent risk factors associated with D14 and D30 mortality were septic shock and renal diseases, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:43:43Z (GMT). No. of bitstreams: 1 ntu-100-R98451001-1.pdf: 1977390 bytes, checksum: d4b38bc18a8bafabaf3cfba61b93d311 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract IV 目錄 VIII 圖目錄 X 表目錄 XI 第一章 緒論 1 第二章 文獻回顧 3 第一節 細菌學 3 第二節 流行病學 4 第三節 感染S. maltophilia菌血症的危險因子 7 第四節 臨床表徵 14 第五節 體外敏感性試驗 15 第六節 抗藥機轉 16 第七節 治療 19 第八節 預後因子 25 第三章 研究目的 28 第四章 研究方法 29 第一節 研究設計與流程 29 第二節 研究地點與對象 30 第三節 資料收集 30 第四節 名詞定義 32 第五節 統計分析 34 第五章 研究結果 35 第一節 描述性分析 35 第一項 收案流程 35 第二項 病人基本資料 36 第三項 病人潛在疾病與合併症 40 第四項 危險因子 40 第五項 發作前30天的感染 45 第六項 前30天使用之抗生素 45 第七項 臨床表徵和疾病嚴重度 49 第八項 死亡率 51 第九項 抗生素敏感性試驗結果 52 第十項 經驗性和確切性抗生素的使用 52 第十一項 經驗性抗生素之適當性 52 第二節 存活分析 58 第三節 影響D14死亡率之預後因子分析 65 第一項 預後因子之單變項分析 65 第二項 經驗性抗生素與死亡率分析 65 第三項 確切性抗生素與死亡率分析 65 第四項 適當抗生素之延遲時間與死亡率分析 75 第五項 多變項分析 75 第四節 影響D30死亡率之預後因子分析 77 第一項 預後因子之單變項分析 77 第二項 經驗性抗生素與死亡率分析 77 第三項 確切性抗生素與死亡率分析 77 第四項 適當抗生素之延遲時間與死亡率分析 86 第五項 多變項分析 86 第六章 討論 88 第一節 病人基本資料與危險因子 88 第二節 死亡率 90 第三節 抗生素使用與死亡率分析 90 第四節 預後因子 92 第一項 D14預後因子分析 92 第二項 D30預後因子分析 93 第五節 研究限制 95 第七章 結論 96 第八章 參考文獻 97 第九章 附件 (case report form) 105 | |
dc.language.iso | zh-TW | |
dc.title | 嗜麥芽寡養單胞菌菌血症回溯性研究:預後因子和抗生素治療結果 | zh_TW |
dc.title | Retrospective study of Stenotrophomonas maltophilia bacteremia: prognostic factors and outcome of antimicrobial therapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林慧玲(Fe-Lin Lin),林淑文(Shu-Wen Lin),盛望徽(Wang-Huei Sheng) | |
dc.subject.keyword | 嗜麥芽寡養單胞菌,血液感染,危險因子,經驗性抗生素,確切性抗生素,合併抗生素, | zh_TW |
dc.subject.keyword | Stenotrophomonas maltophilia,bloodstream infection,risk factor,empirical antibiotic,definitive antibiotic,combination therapy, | en |
dc.relation.page | 114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
顯示於系所單位: | 臨床藥學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。