請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38727
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉如熹 | |
dc.contributor.author | Fei-Ting Huang | en |
dc.contributor.author | 黃妃婷 | zh_TW |
dc.date.accessioned | 2021-06-13T16:43:41Z | - |
dc.date.available | 2005-10-10 | |
dc.date.copyright | 2005-07-11 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-06-30 | |
dc.identifier.citation | 1. K. E. Drexler., Engines of Creation, New York: Anchor Press, 1986.
2. K. Canning, Pollut. Eng. Spring, 5 (1998).ref2.pdf 3. K. Liu, P. Avouris, J. Bucchignano, R. Martel and S. Sun, Appl. Phys. Lett. 80, 865 (2002).ref3.pdf 4. S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, Science 287, 1989 (2000).ref4.pdf 5. http://www.fero.com/usa/ferrofluid_technology_overview.htm 6. http://www.cancernetwork.com/journals/oncology/o0006q.htm 7. http://www.chemtech.com.tw 8. M. I. Zande, M. R. Bohmer, L. G. J. Fokkink and C. Schonenberger, Langmuir 16, 451 (2000).ref8.pdf 9. T. Kotani, L. F. Tsai and A. Tomita, Chem. Commun. 701 (1997).ref9.pdf 10. J. M. Petroski, Z. L. Wang, T. C. Green and M. A. El-Sayed, J. Phys. Chem. B 102, 3316 (1998).ref10.pdf 11. J. S. Bradley, B. Tesche, W. Busser, M. Maase and M. T. Reetz, J. Am. Chem. Soc. 122, 4631 (2000).ref11.pdf 12. M.-P. Pileni, Nature Materials 2, 145 (2003).ref12.doc 13. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature 404, 59 (2000).ref13.pdf 14. L. Manna, E. C. Scher and A. P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000).ref14.pdf 15. Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 1389 (2001).ref15.pdf 16. Y. Y. Yu, S. Chang, C. J. Lee and C. R. C. Wang, J. Phys. Chem. B 101, 6661 (1997).ref16.pdf 17. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, Science 294, 1901 (2001).ref17.pdf 18. I. Pastoriza-Santos and L. M. Liz-Mrzan, Nano Lett. 2, 903 (2002).ref18.pdf 19. M. Maillard, S. Giorgio and M. P. Pileni, J. Phys. Chem. B 107, 2466 (2003).ref19.pdf 20. C. P. Gibson and K. J. Putzer, Science 267, 1338 (1995).ref20.pdf 21. S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000).ref21.pdf 22. C. M. Respaud, F. Senocq, J.-J. Casanove, C. Amiens and B. Chaudret, NanoLett. 1, 565 (2001).ref22.pdf 23. V. F. Puntes, D. Zanchet, C. K. Erdonmez and A. P. Alivisatos, J. Am. Chem. Soc. 124, 12874 (2002).ref23.pdf 24. Y. D. Li, L. Q. Li, H. W. Liao and H. R. Wang, J. Mater. Chem. 9, 2675 (1999).ref24.pdf 25. F. Guo, H. Zheng, Z. Yang and Y. Qian, Mater. Lett. 56, 906 (2002).ref25.pdf 26. H. Niu, Q. Chen, H. Zhu, Y. Linb and X. Zhang, J. Mater. Chem. 13, 1803 (2003).ref26.pdf 27. Y. Zhua, H. Zhenga, Q. Yanga, A. Panb, Z. Yanga and Y. Qiana, J. Crys. Growth 260, 427 (2004).ref27.pdf 28. X. Ni, X. Su, H. Zheng, D. Zhang, D. Yang and Q. Zhao, J Crys. Growth 275, 548 (2005).ref28.pdf 29. O. Kitakami, H. Sato and Y. Shimada, Phys. Rev. B 56, 13849 (1997). 30. http://wiley.com.college/bard 31. S. Sun and C. B. Murray, J. Appl. Phys. 85, 4325 (1999).ref31.pdf 32. D. E. Spelioties, J. Magn. Magn. Mater. 193, 29 (1999).ref32.pdf 33. 張煦與李學養譯,磁性物理學;聯經出版事業公司:台北,民85。 34. 三枝彥雄撰,周斌譯,磁與靜電;商務出版社:台北市,民64。 35. http://www.tyndall.ie/research/mai-group/picture/eh03_epi_mai.jpg 36. J. P. Wilcoxon and P. P. Provencio, J. Phys. Chem. B 103, 9809 (2000).ref36.pdf 37. J. Raabe, R. Pulwey, R. Sattler, T. Schweinbock, J. Zweck and D. Weiss, J. Appl. Phys. 88, 4437 (2000).ref37.pdf 38. A. J. Bennett and J. M. Xu, Appl. Phys. Lett. 82, 2503 (2003).ref38.pdf 39. D. Myers, Surface, Interface, and Colloids; Academic press, 1975. 40. R.J. Hunter, Zetapotential in Colloid Science; Academic press, 1981. 41. K. K. Caswell, C. M. Bender and C. J. Murphy, Nano Lett. 3, 667 (2003).ref41.pdf 42. 陳力俊等著,材料電子顯微鏡學;高立圖書有限公司:新竹,民89。 43. D. B. Williams and C. B. Cauter, Transmission Electron Microscopy; New York: Plenum Press, 1996. 44. http://www.matter.org.uk/glossary/ 45. http://www.nsrrc.org.tw/chi/about/index.html 46. 杜正恭,儀器總覽;行政院國家科學委員會精密儀器發展中心:台北, 民87。 47. S. Remita, G. Picq, J. Khatouri and M. Mostafavi, Radiation Physics and Chemistry 54, 463 (1999).ref47.pdf 48. 陳錦明,科儀新知,82期,50 (民83)。 49. Bianconi, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; John Wiley & Sons: New York, 1988. 50. E. A. Stern, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; John Wiley & Sons: New York, 1988. 51. T. Yokoyama, X-Ray Absorption Fine Structure for Catalysts and Surface; World Scientific: Singapore, 1996. 52. Malvern Instruments Applications Report AN Z3-5, 1991. 53. C. T. Shaw, Introduction to colloid and interface science -4th, Oxford: England, 1992. 54. C. T. Chen, Y. U. Idzerda, H. J. Lin, G. H. Ho and E. Pellegrin, Phys. Rev. Lett. 75, 152 (1995).ref54.pdf 55. C. T. Chen, F. Sette, Y. Ma and S. Modesti, Phys. Rev. B 42, 4726 (1990).ref55.pdf 56. Y. Sun and Y. Xia, Science 298, 2176 (2002).ref56.pdf 57. R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye and M. E. Welland, Phys. Rev. Lett. 83, 1042 (1999).ref57.pdf 58. Y. Ding and J. Erlebacher, J. Am. Chem. Soc. 125, 7772 (2003).ref58.pdf 59. T. M. Whitney, J. S. Jiang, P.C. Searson, C. L. Chien, Science 261, 1213 (1993).ref59.pdf 60. T. T.-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. K.-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen and T. P. Russell, Science 290, 2126 (2000).ref60.pdf 61. Z. Chen, F. Xie, Z. Shi, L. Wang and H. Fu, J. Appl. Phys. 70, 2868 (1991).ref61.pdf 62. J. S. Chhabra, M. B. Talawar, P. S. Makashir, S. N. Asthana and H. Singh, J. Hazard. Mater. A99, 225 (2003).ref62.pdf 63. J. D. Vicente, A. V. Delgado, R. C. Plaza, J. D.G. Duran and F. G. Caballero, Langmuir 16, 7954 (2000).ref63.pdf 64. 金重勳編,磁性技術手冊;中華民國磁性技術協會:新竹縣,民91。 65. 李傳宏, 黃佩珍, 盧成基, 彭國光與徐文泰;材料奈米技術專刊:台北, 民90。 66. P. Gambardella, S. S. Dhesi, S. Gardonio, C. Grazioli, P. Ohresser and C. Carbone, Phys. Rev. Lett. 88, 047202 (2002).ref66.pdf 67. J. Park, N.-J. Kang, Y.-W. Jun, S. J. Oh, H.-C. Ri and J. Cheon, Chemphyschem 6, 543 (2002).ref67.pdf | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38727 | - |
dc.description.abstract | 本論文將討論多樣性鈷粒子-六角片(hexagonal shape)、圓餅(nanodisk)、玉米鬚(corn tassel)及長達微米級狀似毛毛蟲之鈷線(wire)之製備方法、生長機制、結構分析及其特性分析。1997年,Osamu Kitakami等人,利用物理濺鍍方式製備出不同尺寸(20 ~ 150 nm)與不同形狀之鈷奈米粒子,又鑒於鈷除了已知之於穩定狀態時為六方最密堆積結構(hcp-P63/mmc),又稱α-鈷;當溫度達700K,其結構產生相變化,轉變為面心立方結構(fcc-Fm3m),亦稱為β-鈷;近幾年亦發現以濕式化學法合成之鈷粒子傾向另一種複雜立方結構(cubic-P4132),是故具磁化易軸之鈷金屬具多變型態之潛力。
目前,化學法僅V. F. Puntes等人,能以高溫於有機溶液環境,熱裂解Co2(CO)8並同時添加兩種以上分散劑製備鈷奈米片(Co nanodisks),故本研究主要製備方法為兼具低成本與簡易操作特色之濕式化學法建立水相還原系統,以其能於水相系統簡易地控制實驗參數如溫度、雙還原劑、濃度、酸鹼值、分散劑、溶劑…等,改善熱烈解之繁複實驗設計,有系統地探討以化學還原方式,合成不同形狀之鈷奈米粒子。 實驗結果顯示,粒子形狀與反應物濃度與界面電位與酸鹼值之間有相當微妙之關係,酸鹼值主導界面電位之改變,界面電位將操控粒子之排列,同時於本實驗系統,亦可觀察選擇具鐵磁性之材料,其粒子成長不僅受到凡得瓦力影響,磁性更是主導粒子間的堆積。本研究製備了零維、一維及二維鈷奈米材料,探討不同維度粒子之成長變因,並將此系統推展至亦具鐵磁性之鐵、鎳材料,深究磁性奈米粒子成長之控制機制。 此外,我們利用穿透式電子顯微鏡及量測比表面積,分析其縱截面孔洞構造,以掃描式電子顯微鏡觀察其形貌與粒徑,並藉由界面電位分析儀獲得粒子表面電位分布。並同時利用所合成之各種形狀之鈷奈米粒子進行多項磁特性之量測,亦以同部輻射之X光印證其成分及特性結構。本研究合成多樣性鈷奈米結構,重點在於建立水相還原系統,探討不同維度磁性粒子成長機制,預期將可更精確地掌握磁性粒子之成長,控制磁特性,提供磁性維奈米元件應用上之參考依據。 | zh_TW |
dc.description.abstract | The Objectives of the study are to synthesize and investigate various cobalt materials of different shapes like hexagonal flake, nanodisk, corn tassel and cobalt wire like caterpillar from cobalt nanoparticles.. The study also proposes a plausible mechanism of the formation of these cobalt materials.
In 1997, a new physical sputtering method has been reported to produce different shapes cobalt nanomaterials. On the other side, cobalt has three kinds of phases such as hexagonal close packing (hcp-P63/mmc), face center close packing (fcc-Fm3m) and cubic structure (cubic-P4132). As cobalt has superior potential for fabrication into various shapes, cobalt is chosen as the subject of this study. However, nowadays most systems are used in organic environment. The present study establishes an aqueous system which is having advantages of lower cost and easier control of experimental conditions such as the concentration, temperature, pH and capping agent. The results show that the variation reactant concentration, magnetic force direction and zeta potential of cobalt materials lead to various shapes. For example this may be due to the increase of reactant concentration lowers the zeta potential of materials while slight variation of pH results in level of aggregation. TEM and SEM characterization techniques have been employed to study the interior porous structure of cobalt wire and to observe topography and size of materials, respectively. The study has also done MCD and EXAFS experiment in NSRRC to prove the nanostructure of inner cobalt wires. The present study establishes an aqueous system to synthesize cobalt nanomaterials of different shapes and can be a promising technique to produce other magnetic materials in future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:43:41Z (GMT). No. of bitstreams: 1 ntu-94-R92223010-1.pdf: 11800307 bytes, checksum: 28ef8af3728d6dee872d03532fe46c33 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 第一章 序論…………………………………………………………….1
1.1 前言…………………………………………………………………1 1.2 文獻回顧與相關原理………………………………………………2 1.2.1 磁奈米粒子之應用……………………………………….…2 1.2.2 奈米粒子合成方法之介紹………………………………….5 1.2.3 控制奈米材料形狀之製備方法文獻探討……………….…7 1.2.4 鈷結構介紹………………………………………………...14 1.2.5 水溶液與有機相反應之比較……………………………...16 1.2.6 還原劑與鐵鈷鎳氧化電位比較…………………………...16 1.2.7 奈米之特性………………………………………………...18 1.2.8 界面電位理論……………………………………………...24 1.2.9 結晶理論…………………………………………………...27 1.3 研究動機與目的…………………………………………………..29 第二章 實驗步驟與儀器分析原理…………………………………...31 2.1 化學藥品…………………………………………………………..31 2.2 磁性材料之製備…………………………………………………..33 2.2.1 製備奈米六角鈷片………………………………………...33 2.2.2 製備奈米圓餅……………………………………………...35 2.2.3 製備具奈米結構之微米鈷線……………………………...37 2.2.4 製備微米鎳線….…………………………………………..39 2.2.5 製備具玉米鬚結構鈷……………………………………...41 2.3 樣品之鑑定與分析………………………………………………..42 2.3.1 電子顯微鏡 (Electron Microscopy)………………………42 2.3.2 同步輻射光源………………………………………………47 2.3.3 X光粉末繞射 (X-ray Powder Diffractometer;XRD)………………………………………………………………48 2.3.4 X光吸收光譜 (X-ray Absorption Spectroscopy; XAS)…………………………………………………………...…..50 2.3.5 雷射奈米粒徑暨界面電位量測儀 (Zetasizer)……………56 2.3.6 軟X光磁圓偏振二向性 (Soft X-ray Magnetic Circular Dichroism; XMCD)…………………………………...……….....60 2.3.7 超導量子干涉儀 (Superconducting Quantum Interference Devic; SQUID)…………………………………………………65 第三章 結果與討論 3.1 濃度效應…………………………………………………………...67 3.1.1 低濃度效應-鈷六角片與鈷圓餅粒子之製備…………....70 3.1.2 分散劑效應………………………………………………....75 3.1.3 結構與磁特性分析…………………………………………78 3.2 高濃度效應………………………………………………………...81 3.2.1 高濃度效應-冬蟲夏草鈷線結構之製備………………....81 3.2.2 穿透式電子顯微鏡截面分析……………………………....85 3.2.3 結構與磁特性分析………………………………………....95 3.2.4 分散劑效應………………………………………………....99 3.2.5 酸鹼值、壓力與磁場效應…………………………….…..103 3.2.6 X光吸收精細結構分析……………………………….…...105 3.2.7 磁圓偏振二向性……………………………………...…...107 3.3零維、一維與二維粒子成長機制探討……………….………….115 3.4 高濃度雙還原劑效應-玉米鬚結構之製備………………….…119 3.4.1 玉米鬚結構之製備……………………………………..…119 3.4.2 結構與磁特性分析……………………………………..…121 3.4 鐵磁性材料-鐵鈷鎳比較…………………………………….…124 第四章 結論與未來方向………………………………………….….129 4.1 總結……………………………………………………………….129 4.2未來方向…………………………………………………………..131 第五章 參考文獻………………………………………………….….132 | |
dc.language.iso | zh-TW | |
dc.title | 多樣性鈷材料之製備及其特性分析 | zh_TW |
dc.title | Synthesis and Characterization of Various Cobalt Materials | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張慶瑞,林麗瓊,陳逸聰,韋文誠 | |
dc.subject.keyword | 鈷,界面電位,磁圓偏振二向性,形狀,分散劑,鐵鎳, | zh_TW |
dc.subject.keyword | cobalt,MCD,shape,CTAB,zeta potential,nickel,iron, | en |
dc.relation.page | 135 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-06-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 11.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。