Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38700
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄(Hao-Hsiung Lin)
dc.contributor.authorChi-Sen Leeen
dc.contributor.author李騏亘zh_TW
dc.date.accessioned2021-06-13T16:42:36Z-
dc.date.available2005-07-04
dc.date.copyright2005-07-04
dc.date.issued2005
dc.date.submitted2005-07-01
dc.identifier.citation[1]Y. Arakawa and H. Sakaki, “Multidimensional quantum
well lasers and temperature dependence of its threshold
current,” Appl. Phys. Lett., vol. 40, pp. 939–941,
1982.
[2]N. N. Ledentsov, M. Grundmann, F. Heinrichsdorff, D.
Bimberg, V. M. Ustinov, A. E. Zhukov, M. V. Maximov,
Zh. I. Alferov, and J. A. Lott, “Quantum-Dot
Heterostructure Lasers,” IEEE. J. Select. Topics
Quantum Electron., vol. 6, pp. 439-451, 2000.
[3]M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots. ,
Academic Press, 1999.
[4]I.R. Sellers, H.Y.Liu, K.M. Groom, D.T. Childs,
D.Robbins, T.J. Badcock, M. Hopkinson, D.J. Mowbary and
M.S. Skolnick,”1.3μm InAs/GaAs multiplayer quantum-dot
laser with extremely low room-temperature threshold
current density,” Electron. Lett., vol. 40, pp. 1412-
1413, 2004.
[5]M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the
threshold of three-dimensional quantum-box lasers,”
IEEE J. Quantum Electron., vol. 22 pp. 1915-1921, 1986.
[6]S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S.
Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N.
Ledentsov,”The role of Auger recombination in the
temperature-dependent output characteristics (T0=∞) of
p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett.,
vol. 85, pp. 5164–5166, 2004.
[7]I.I. Novikov, N.Yu Gordeev, L. Ya. Karachinskii, M.V.
Maksimov, Yu. M. Shernyakov, A.R. Kovsh, I. L.
Krestnikov, A.V. Kozhukhov, S.S. Mikhrin and N.N
Ledentsov,”Effect of p-Doping of the Active Region on
the Temperature Stability of InAs/GaAs QD Lasers,”
Semicond., vol 39, pp. 477-480, 2005.
[8]N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D.
Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov,
P. K. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner,
U. Gosele, and J. Heydenreich, “Low threshold, large T
injection laser emission from (InGa)As quantum dots,”
Electron. Lett., vol. 30, pp. 1416-1418, 1994.
[9]G. T. Liu, H. Li, K. J. Malloy, and L. F. Lester,
“Extremely low roomtemperature threshold current
density diode lasers using InAs dots in
In0.15Ga0.85As quantum well,” Electron. Lett., vol.
35, pp. 1163-1165, 1999.
[10]O. B. Shchekin and D. G. Deppe, “1.3 μm InAs quantum
dot laser with To =161 K from 0 to 80°C,” Appl. Phys.
Lett., vol. 80, pp. 3277-3279, 2002.
[11]K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N.
Yokoyama, and H.Ishikawa,“ High characteristic
temperature of near-1.3-μm InGaAs/GaAs quantum-dot
lasers at room temperature,” Appl. Phys. Lett., vol.
76, pp. 3349-3351, 2000.
[12]F. Y. Chang, C. C. Wu, and H. H. Lin, “Effect of
InGaAs capping layer on the properties of InAs/InGaAs
quantum dots and lasers”, Appl. Phys. Lett., vol. 82,
pp. 4477-4479, 2003.
[13]A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J.
Malloy, “Low-Threshold Current Density 1.3-μm InAs
Quantum-Dot Lasers with the Dots-in-a-Well (DWELL)
Structure,” IEEE Photon. Technol. Lett., vol. 12, pp.
591-593, 2000.
[14]K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N.
Yokoyama, and H. Ishikawa, “1.3-μm CW Lasing
Characteristics of Self-Assembled InGaAs–GaAs Quantum
Dots,” IEEE. J. Quantum Electron., vol. 36, pp. 472-
478, 2000.
[15]Y. Qiu, P. Gogna, S. Forouhar, A. Stintz, and L. F.
Lester, “High-performance InAs quantum-dot lasers
near 1.3 μm,” Appl. Phys. Lett., vol. 79, pp. 3570-
3572, 2001.
[16]R. Krebs, F. Klope, J.P. Reithmaier, and A. Forchel,
“High performance 1.3 μm quantum-dot lasers,” Jpn. J.
Appl. Phys., vol 41, pp. 1158-1161, 2002.
[17]A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S.
Mikhrin, A. P. Vasil’ev, E. A. Semenova, Yu. M.
Shernyakov, M. V. Maximov, D. A. Livshits, V. M.
Ustinov, N. N. Ledentsov, D. Bimberg, and Zh. I.
Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μ
m range with enhanced optical gain,” J. Cryst.
Growth, vol. 251, pp. 729-736, 2003.
[18] F. Y. Chang, J. D. Lee, and H. H. Lin, “Low
threshold-current density 1.3 µm InAs/InGaAs quantum
dot lasers with InGaP cladding layers grown by gas-
source molecular-beam epitaxy,” Electron. Lett., vol.
40, pp. 179-180, 2003.
[19]O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H.
Mao, D.Bimberg, V. M. Ustinov, A. Y. Egorov, A. E.
Zhukov, M. V. Maximov, P. S. Kopev, and Z. I.
Alferov,”Prevention of gain saturation by multi-layer
quantum dot laser,” Electron. Letter. 32, pp. 1302-
1304, 1996.
[20]G. S. Solomon, J.A. Trezza, A.F. Marshall, and J.S.
Harris,”Vertically Aligned and Electronically
Coupled Growth Induced InAs Islands in GaAs,” Phys.
Rev. Letter. 76, pp.952-955 1996.
[21]I. Mukhametzhanov, Z. Wei, R. Heitz, A.Madhukar, ”
Punctuated island growth: An approach to examination
and control of quantum dot density, size, and shape
evolution,” Appl. Phys. Lett. 75, pp.85-87 1999.
[22]K. Nishi, H. Saito, S. Sugou, and J. S. Lee, “A
narrow photoluminescence linewidth of 21 meV at 1.35
µm from strain-reduced InAs quantum dots covered by
In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys.
Lett., vol. 74, pp. 1111-1113, 1999.
[23]R. Sellin, F. Heinrichsdor, Ch. Ribbat, M. Grundmann,
U.W. Pohl, and D. Bimberg, “ Surface flattening
during MOCVD of thin GaAs layers covering InGaAs
quantum dots,” J. Cryst. Growth, vol. 221, pp. 581-
585, 2000.
[24]Fu-Yu Chang, Chi-Sen Lee, Gang-Hua Liao, and Hao-
Hsiung Lin, 16th Indium Phosphide and Related
Materials, Kagoshima, Japan, 2004.
[25]N. N. Ledentsov, M. V. Maximov, D. Bimberg, T. Maka,
C. M. Sotomayor Torres, I. V. Kochnev, I. L.
Krestnikov, V. M. Lantratov, N. A. Cherkashin, Yu. M.
Musikhin, and Zh. I. Alferov, “1.3 µm luminescence
and gain from defect-free InGaAs–GaAs quantum dots
grown by metal-organic chemical vapour deposition,”
Semicond. Sci. Technol., vol. 15, pp. 604-607, 2000.
[26]H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J.
Mowbray, M. S. Skolnick K. M. Groom, M. Gutierrez, M.
Hopkinson, J. S. Ng, J.
P. R. David and Beanland,”Improve performance of 1.3 μ
m multiplayer InAs quantum-dot lasers using high-growth- temperature GaAs spacer layer,” Appl. Phys. Lett.
Vol.85, pp.704-706, 2004.
[27]Ralph Williams, Modern GaAs Processing
Methods. ,Boston London 1990.
[28]Electro-Optics Technology
http://www.eotech.com/store/pdf/Biased_InGaAs_Detectors.pdf
[29]R. Fehse, I. Marko and A.R. Adams,” Long wavelength
lasers on GaAs substrates,” IEE Proc.-Circuits
Devices Syst., vol. 150, pp. 521-528, 2003.
[30]V. M. Ustinov and A. E. Zhukov,” Topic Review GaAs-
based long-wavelength lasers,” Semicond. Sci.
Technol., vol. 15, pp R41-R45, 2000.
[31]Liu, G.T., Stintz, A., Li, H., Newell, T.C., Gray,
A.L., Varangis, P. M., Malloy, K.J., and Lester,
L.F.,” The influence of quantum- well composition on
the performances of quantum dot lasers using
InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE
J. Quantum Electron., vol. 36, pp-1272-1279,2000.
[32]Mukai, K., Nakata, Y., Otsubo, K., Sugawara, M.,
Yokoyama, N., and Ishikaya, H.,” 1.3-μm CW lasing of
InGaAs-GaAs quantum dots at room temperature with a
threshold current of 8 mA,” IEEE Photonics Technol.
Lett., vol 11, pp. 1205-1207, 1999.
[33]Park, G., Shchekin, O.B., Huffaker, D.L., and Deppe,
D.G.,” InGaAs quantum dot lasers with sub-milliamp
threshold and ultra-low threshold current density
below room temperature,” Electron. Letter., vol 36,
pp. 1283-1284, 2000.
[34]Shchekin, O.B., and Deppe, D.G.,” Low-threshold high-
T0 1.3μm InAs quantum-dot lasers due to p-type
modulation of the active region,” IEEE Photonics
Technol. Lett., vol 14, pp. 1231-1233, 2002.
[35]Zhukov, A. E., Kovsh, A.R., Ustinov, V. M.,
Shernyakov, YU. M., Mikhrin, S.S., Maleev, N.A.,
Kondrat’eva, E. Yu., Livshits, D.A., Maximov, M. V.,
Volovok, B. V., Bedarev, D. A., Musikhin, Y.G.,
Ledentsov, N.N., Kop’ev, P.S., Alferov, ZH. I., and
Bimberg, D.,” Continuous-wave operation of long-
wavelength quantum-dot diode laser on a GaAs
substraye,” IEEE Photonics Technol. Lett., vol. 11,
pp. 1345-1347, 1999.
[36]Kovsh, A.R., Maleev, N.A., Zhukov, A.E., Mikhrin,
S.S., Vasol’ev, A.P., Shernyakov, Yu. M., Maximov,
M.V., Livshits, D.A., Ustinov, V.M., Alferov, Zh. I.,
Ledentsov, N.N., and Bimberg, D.,” InAs/InGaAs/GaAs
quantum dot lasers of 1.3μm range with high (88%)
differential efficiency,” Electron. Letter.. vol. 38,
pp.1104-1106, 2002.
[37]Klopf, F., Reithmaier, J.P., Forchel, A., Collot, P.,
Krakowsli, M., and Calligaro, M.,” High-perfoemance
980 nm quantum dot lasers for high-power
applications,” Electron. Letter., vol 37, pp. 353-
354, 2001.
[38]Chen, H., Zou, Z., Shchekin, O.B., and Deppe, D.G..,”
InAs quantum- dot lasers operating near 1.3μm with
high characteristics temperature for continuous-wave
operation,” Electron. Letter., vol 36, pp. 1703-1704,
2000.
[39]Shchekin, O.B., Park, G., Huffaker, D.L., Mo, Q., and
Deppe, D.G.,” Low-threshold continuous-wave two-stack
quantum dot laser with reduced temperature
sensitively,” IEEE Photonics Technol. Lett., vol. 12,
pp. 1120-1122, 2000.
[40]Shchekin, O.B., Ahn, J., and Deppe,” High temperature
performances of self-organised quantum dot lasers with
stacked p-doped active region,” Electron. Letter.,
vol 38, pp. 712-713, 2002.
[41]Ustinov, V.M., Egorov A. Yu, Kovsh, A. R., Zhukov, A.
E., Maximov, M. V., Tsatsul’nikov, A.F., Gordeev, N.
Yu., Zaitsev, S.V., Shernyakov, Yu. M., and Bert, N.A.
et al.,” Low-threshold injection lasers based on
vertically coupled quantum dots,” J. Cryst. Growth,
vol. 175/176, pp. 689-695, 1997.
[42]Zhukov, A.E., Kovsh, A.R., Mikhrin, S.S., Maleev,
N.A., Ustinov, V.M., Livshits, D.A., Tarasov, I.S.,
Bedarev, D.A., Maximov, M.V., Tsatsul’nikov, A.F.,
Soshnikov, I.P., Kop’ev. P.S., Alferov, ZH.I.,
Ledentsov, N.N., and Bimberg, D.,” 3.9W CW power from
submonolayer quantum dot diode laser,” Electron.
Letter., vol 35, pp. 1845-1846, 1999.
[43]Liu, H.Y., Xu, B., Wei, Y.Q., Ding, D., Qian, J.J.,
Han, Q., Liang, J.B., and Wang, Z.G.,” High power and
long lifetime InAs/GaAs quantum-dot laser at 1080
nm,” Appl. Phys. Lett., vol. 79, pp. 2868-3279, 2001.
[44]Maximov, M.V., Kochnev, I.V., Shernyakov, Y.M.,
Zaitsev, S.V., Gordeev, N.Yu., Tsatsul’nikov, A.F.,
Sakharov, A.V., Krestinikov, I.L., Kop’ev, P.S.,
Alferov, Zh.I., Ledentsov, N.N., Bimberg, D., Kosogov,
A.O., Werner, P., and Gosele, U.,” InGaAs/GaAs
quantum dot lasers with ultrahigh characteristic
temperature (T0 = 385K) grown by metal organic
chemical vapour deposition,” Jpn. J. Appl. Phys., vol
36, pp. 4221-4223, 1997.
[45]Sellin, R.L., Ribbat, C., Bimberg, D., Rinner, F.,
Konstanzer, H., Kelemen, M.T., and Mikulla, M.,” High-
reliability MOCVD-
grown quantum dot laser,” Electron. Letter., vol 38,
pp. 883-884, 2002.
[46]A. Markus, J. X. Chen, C. Paranthoen, A. Fiore, C.
Platz, and O. Gauthier-Lafaye,”Simultaneous two state
lasing in quantum-dot lasers” Appl. Phys. Lett., vol.
82, pp. 1818-1820, 2003.
[47]Alexander Markus, Jianxin X. Chen, Oliver Gauthier-
Lafaye, Jean-Guy, Cyril Paranthoen and Andrea Fiore,”
Impact of Intraband Relaxation on the Performance of a
Quantum-Dot Laser,” IEEE Select. Topics Quantum
Electron., vol. 9, pp.1308-1314, 2003.
[48]G.P. Agrawal, and N.K. Dutta, Semiconductor Lasers,
Van Nostrand Reinhold, 1993.
[49]L.A. Coldren, and S.W. Corzine, Diode Lasers and
Photonic Integrated Circuits, Wiley, 1995.
[50]Shun Lien Chuang, Phyaics of Optoelectronics Devices,
Wiely, 1995.
[51]D. Bimberg, N.N Ledentsov, M. Grundmann, N.
Kirstaedter, O.G. Schmidt, M.H Mao, V.M. Ustinov, A.Yu
Egorov, A.E. Zhukov, P.S. Kopev, Zh. I. Alferov, S.S.
Ruvimov, U. Gosele. And J. Heydenreich,”InAs-GaAs
quantum pyramid lasers: in situ growth. Radiative
lifetimes and polarization properties.” Jpn. J. Appl.
Phys., vol. 35 pp. 1311-1319. 1996.
[52]Z.R. Wasilewski, S. Fafard, J.P. McCaffrey, ”Size and
shape engineering of vertically stacked self-assembled
quantum dots,” J. Cryst. Growth, vol. 201/202, pp.
1131-1135, 1999.
[53]M. O. Lipinski, H. Schuler, O.G. Schmidt, and K. Eberl
and N. Y. Jin-Phillipp,”Strain-induced material
intermixing of InAs quantum dots in GaAs,” Appl.
Phys. Lett. 77, pp. 1789-1791 2000.
[54]Robin Fehse, Stanko Tomic, Alfred R. Adams, Stephen
John Sweeney, Eoin. O’Reilly, Aleksey Andreev and
Henning Riechert,” A Quantitative Study of Radiative,
Auger, and Defect Related Recombination Processes in
1.3-μm GaInNAs-Based Quantum-Well Lases,” IEEE
Select. Topics Quantum Electron., vol. 8, pp.801-810,
2002.
[55]Alistair F. Phillips, Stephen J. Sweeney, Alfred R.
Adams and Peter J. A. Thijs,” The Temperature
Dependence of 1.3- and 1.5-μm Compressively Strained
InGaAs(P) MOW Semiconductor Lasers,” IEEE Select.
Topics Quantum Electron., vol. 5, pp.401-412, 1999.
[56]I. P. Marko, A. D. Andreev, A.R. Adams, R. Krebs, J.
P. Reithmaier and A. Forchel,” The Role of Auger
Recombination in InAs 1.3-μm Quantum-Dot Lasers
Inverstigated Using High Hydrostic Pressure,” IEEE
Select. Topics Quantum Electron., vol. 8, pp.1300-
1307, 2003.
[57]I. P. Marko, A. D. Andreev, A.R. Adams, R. Krebs, J.
P. Reithmaier and A. Forchel,” High-pressure studies
of the recombination process, threshold, and lasing
wavelengths in InAs/GaInAs quantum dot lasers,” Phys.
Stat. Sol.(b), vol. 235, pp. 407-411, 2003.
[58]I. P. Marko, A. D. Andreev, A.R. Adams, R. Krebs, J.
P. Reithmaier and A. Forchel,” Important of Auger
recombination in InAs 1.3μm quantum dot lasers,”
Electron. Lett., vol. 39, pp. 58-59, 2003.
[59]Lynford L. Goddard, Seth R. Bank, Mark A. Wistey,
Homan B. Yuen, Zhilong Rao, and James S. Harris, Jr. “ Recombination, gain, band structure, efficiency, and
reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl.
Phys., vol. 97, pp.083101-1 -083101-15, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38700-
dc.description.abstract本論文分別研究量子點層數、耦合式量子點結構以及雷射InGaP夾層的晶格匹配對量子點雷射特性的影響。在量子點層數的部分,我們發現具有10層量子點的元件雖有較大的飽和增益,但因為層數過多,應變太大造成起振電流等特性的劣化。5層量子點的元件具有最佳的特性,當共振腔長度為3 mm時,室溫放光波長1293 nm、起振電流密度為83.4 A/cm2,其平均每層透明電流甚至低達6 A/cm2和理論計算結果約4~8 A/cm2相當,證明具有不錯的材料品質。3層量子點的元件則因為層數太少,影響增益,造成其雷射特性較5層為差。
我們發現耦合式量子點發現具有較大的量子點和較低的量子點密度。但較低的量子點密度並不影響其雷射特性表現,當共振腔長度為2 mm時起振電流密度為133 A/cm2和一般正常量子點結構相當,然而耦合式量子點結構具有更長的放光波長,其放光波長為1250 nm長於一般正常量子點結構的1211 nm。
最後我們探討應力夾層磷銦化鎵的影響,樣品分別具有晶格匹配 、壓縮應力和弛張應力的夾層。我們發現將量子點成長在具有應變的夾層之上時,會造成波浪狀或細紋結構。量子點更會形成兩個具有不同尺寸的量子點群。所製成的雷射雖然也有很小的起振電流,但由於增益較小無法在基態放光。
zh_TW
dc.description.abstractIn this thesis, we report our studies on the effects of quantum-dot (QD) stack number, coupled QD structure, and the lattice mismatch of InGaP cladding layers on the performances of QD lasers. In the portion of QD stack number, it is found that though the lasers with 10 QD stacks have the highest saturation gain, the accumulated strain is too large to be accommodated by the lattice, which leads very large threshold current density in laser performances. A 3-mm-long as-cleaved device with 5 QD stacks lases at 1293 nm and shows the best performances. In terms of the transparency current density per QD layer, the device demonstrates a value of only 6 A/cm2 which is within the range of the calculated results and justifies the good material quality in our QD lasers. Lasers with 3 QD stacks, however, have lower gain and therefore worse performances than the lasers with 5 QD stacks.
In the study of InAs coupled-QD structure, we found that the coupled QDs have lower density than the normal QDs. However, the lower density does not significantly deteriorate the laser performances. A 2-mm-long laser with coupled-QD demonstrates a very low threshold current density of 133A/cm2, which is just slightly lower than the laser with normal QD. In addition, the coupled-QD laser also demonstrates longer emission wavelength than its controlled device.
In the final research subject, we investigate the effect of the lattice mismatch in the InGaP cladding layers on the laser performances. Samples with lattice-matched, compressive strained and tensile strained InGaP layers were grown and compared. We found that the lattice-mismatch InGaP layers will result in wavy strip structure or even hatches. QDs deposited on top of these layers will be separated into two groups. Though the lasers with lattice-mismatch cladding layers still have low threshold current density, the gain is too small to support ground state lasing.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:42:36Z (GMT). No. of bitstreams: 1
ntu-94-R92943049-1.pdf: 1248201 bytes, checksum: 54dca25a08c65096c2391fe58a396286 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要…………………………………………………………………І
Abstract………………………………………………………………..Π
Figure captions………………………………………………………VІ
Chapter 1 Introduction………………………………………………1
Chapter 2 Experiments……………………………………………….8
2.1 Structure design and epitaxial growth………..…………9
2.1.1 Laser structures with different QD stacks……………9
2.1.2 Laser structures for coupled and normal QDs……….11
2.1.3 Laser structures for different InGaP cladding
layers…..........................................13
2.2 Fabrication process for lasers……………………………13
2.3 Measurement setups………………………….……………….19
2.3.1 Photoluminescence (PL) measurement.………………….19
2.3.2 Light-power versus current (L-I) measurement………19
2.3.3 Electroluminescence (EL) measurement…………………20
2.3.4 Spontaneous emission measurement……………………..20
Chapter 3 Results and discussions I: InAs/InGaAs/GaAs QD lasers with different stack numbers……………...………….33
3.1 Structural properties……………………………………….33
3.2 Optical properties……………….………………………….34
3.3 Laser performances…………….…………………………….35
Chapter 4 Results and discussions II: InAs/InGaAs/GaAs coupledquantum-dot laser………….........................53
4.1 Structural properties……………………………………….53
4.2 Laser performances……………………………………………55
Chapter 5 Results and discussions III: effects of strain on
InAs/InGaAs/GaAs quantum-dot laser…………………….......67
5.1 Structural properties……………………………………….67
5.2 Optical properties……………………………………………68
5.3 Laser performances……………………………………………70
Chapter 6 Conclusions………………………………………………91
References…………………………………………………………….93
dc.language.isoen
dc.title砷化銦/砷化銦鎵/砷化鎵量子點雷射之研究zh_TW
dc.titleStudy on InAs/InGaAs/GaAs Quantum dot lasersen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee涂元光,毛明華(Ming-Hua Mao),鄭舜仁,王智祥
dc.subject.keyword分子束磊晶,量子點,量子點雷射,zh_TW
dc.subject.keywordMBE,Quantum dot,Quantum dot laser,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2005-07-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved