請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江衍偉 | |
| dc.contributor.author | Yi-Ping Yen | en |
| dc.contributor.author | 顏一平 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:42:19Z | - |
| dc.date.available | 2005-07-15 | |
| dc.date.copyright | 2005-07-15 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-01 | |
| dc.identifier.citation | [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2061 (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [3] R. Petit, Electromagnetic Theory of Gratings, Springer, Berlin (1980). [4] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982). [5] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995). [6] J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209-229 (1994). [7] P. M. Bell, J. B. Pendry, L. Marin Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306-322 (1995). [8] L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581-2591 (1993). [9] L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024-1035 (1996). [10] L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758-2767 (1997). [11] B. Gralak, S. Enoch, and G. Tayeb, “From scattering or impedance matrices to Bloch modes of photonic crystals,” J. Opt. Soc. Am. A 19, 1547-1554 (2002). [12] Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [13] L. L. Lin, Z. Y. Li, and K. M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94, 811-821 (2003). [14] Z. Y. Li and K. M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003). [15] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152-3155 (1990). [16] D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134-7142 (1996). [17] Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721-3729 (1998). [18] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997). [19] K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin (2001). [20] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” IEEE, J. Lightwave Technol. 19, 1970-1975 (2001). [21] J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystal, Princeton University Press, New Jersey (1995). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38693 | - |
| dc.description.abstract | 在本論文中,我們以傳輸矩陣法進行數值模擬並探討數種二維光子晶體的特性。傳輸矩陣法常被用於處理光柵結構的電磁場傳播問題上。以平面波為基底展開後,亦可用於探討有限長�半無限長的二維光子晶體內的電磁波傳播特性,解決光子晶體波導與方向耦合器內的電磁場分佈問題。加上布拉格條件,亦可用來計算無窮大光子晶體的色散關係,並以之描繪能帶圖。傳輸矩陣法的各個分割區塊互不相同,故可處理非週期性之結構。因此我們可以此方法計算二維異質結構的光子晶體傳輸頻譜。由數值模擬而得的特性,可使我們進一步了解各種積體光路的元件結構,以期對各結構的尺寸規格進行最佳化。 | zh_TW |
| dc.description.abstract | In this thesis, we use a transfer-matrix method (TMM) to numerically investigate the transmission characteristics of two-dimensional photonic crystals. The transfer-matrix method has been routinely used to calculate the transmission and reflection spectra of electromagnetic waves propagating through conventional gratings. By adopting the plane-wave bases to expand the electromagnetic field components, we can deal with the electromagnetic wave propagation inside finite/semi-infinite 2D photonic crystals, and further solve the field distributions for related structures such as waveguides and directional couplers. By matching the Bloch condition, we can also calculate the dispersion relation for an infinite photonic crystal and plot the band diagram. Since the slicing scheme in the TMM requires no periodicity along the propagating direction, we can apply this method to solve the transmission spectrum for hetero photonic crystals. Through the properties learned from the simulations, we can better realize the functional elements in optical integrated circuits, and design optimal feature size for each element. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:42:19Z (GMT). No. of bitstreams: 1 ntu-94-R92942052-1.pdf: 2278384 bytes, checksum: c5cc6b3e4c641c6a8780213b206e8ed3 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Problem Structure and Numerical Methods 9 2.1 Problem structure 9 2.1.1 Photonic crystal waveguides 9 2.1.2 Photonic crystal couplers 10 2.2 Plane-wave-based transfer-matrix method 10 Chapter 3 Transfer Matrices 24 3.1 Transfer matrix for a 2D photonic crystal 24 3.2 Transfer matrix for a 2D photonic crystal with a single line defect 25 3.3 Transfer matrix for a 2D photonic crystal with multiple line defects 29 3.4 Transfer matrix for a hetero photonic crystal 31 Chapter 4 Photonic Crystal Waveguides and Couplers 35 4.1 Transmission characteristics of photonic crystal waveguides 35 4.1.1 Cylinder photonic crystal waveguides 35 4.1.2 Square rod photonic crystal waveguides 36 4.2 Field distributions and power flows of photonic crystal couplers 36 4.2.1 Cylinder photonic crystal couplers 36 4.2.2 Square rod photonic crystal couplers 37 Chapter 5 Hetero Photonic Crystals 51 Chapter 6 Conclusions 59 References 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 傳輸矩陣法 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | Photonic crystal | en |
| dc.subject | TMM | en |
| dc.title | 傳輸矩陣法及其在光子晶體上的應用 | zh_TW |
| dc.title | Transfer-Matrix Method and its Applications to Photonic Crystals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張宏鈞,楊志忠,邱奕鵬 | |
| dc.subject.keyword | 傳輸矩陣法,光子晶體, | zh_TW |
| dc.subject.keyword | TMM,Photonic crystal, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
