Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38629
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林亮音(Liang-In Lin)
dc.contributor.authorTzu-Hsuan Chuangen
dc.contributor.author莊子璇zh_TW
dc.date.accessioned2021-06-13T16:39:47Z-
dc.date.available2014-10-07
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-07-18
dc.identifier.citation1. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951 Apr;6(4):372-5.
2. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood.
2009 Jul 30;114(5):937-51.
3. Nowell PC. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut. 1962 Apr;8:65-6. Swerdlow SH. WHO classification of tumours of haematopoietic and lymphoid
tissues. Lyon: International Agency for Research on Cancer; 2008.
5. Wilks AF. Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1603-7.
6. Basham B, Sathe M, Grein J, McClanahan T, D'Andrea A, Lees E, et al. In vivo identification of novel STAT5 target genes. Nucleic Acids Res. 2008 Jun;36(11):3802-18.
7. Yoshimura A, Misawa H. Physiology and function of the erythropoietin receptor. Curr Opin Hematol. 1998 May;5(3):171-6.
8. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005 Mar 19-25;365(9464):1054-61.
9. McLornan D, Percy M, McMullin MF. JAK2 V617F: a single mutation in the myeloproliferative group of disorders. Ulster Med J. 2006 May;75(2):112-9.
10. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007 Feb 1;356(5):459-68.
11. Percy MJ, Scott LM, Erber WN, Harrison CN, Reilly JT, Jones FG, et al. The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels. Haematologica. 2007 Dec;92(12):1607-14.
12. Haan C, Kroy DC, Wuller S, Sommer U, Nocker T, Rolvering C, et al. An unusual insertion in Jak2 is crucial for kinase activity and differentially affects
cytokine responses. J Immunol. 2009 Mar 1;182(5):2969-77.
13. Fourouclas N, Li J, Gilby DC, Campbell PJ, Beer PA, Boyd EM, et al. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica. 2008 Nov;93(11):1635-44.
14. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006 Jul;3(7):e270.
15. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al.
MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006 Nov 15;108(10):3472-6.
16. Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. An amphipathic motif at the transmembrane-cytoplasmic junction prevents
autonomous activation of the thrombopoietin receptor. Blood. 2006 Mar 1;107(5):1864-71.
17. Guglielmelli P, Pancrazzi A, Bergamaschi G, Rosti V, Villani L, Antonioli E, et al. Anaemia characterises patients with myelofibrosis harbouring Mpl mutation.
Br J Haematol. 2007 May;137(3):244-7.
18. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D, et al. MPL
mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood. 2008 Jul 1;112(1):141-9.
19. Wang RC, Smogorzewska A, de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell. 2004 Oct 29;119(3):355-68.
20. Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973 Sep 14;41(1):181-90.
21. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34(19):5402-15.
22. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, et al. Mammalian telomeres end in a large duplex loop. Cell. 1999 May
14;97(4):503-14.
23. Blackburn EH. Switching and signaling at the telomere. Cell. 2001 Sep 21;106(6):661-73.
24. Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem. 2004;73:177-208.
25. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med. 1999 Jul 19;190(2):157-67.
26. Brummendorf TH, Holyoake TL, Rufer N, Barnett MJ, Schulzer M, Eaves CJ, et al. Prognostic implications of differences in telomere length between normal and
malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood. 2000 Mar15;95(6):1883-90.
27. Terasaki Y, Okumura H, Ohtake S, Nakao S. Accelerated telomere length shortening in granulocytes: a diagnostic marker for myeloproliferative diseases. Exp Hematol. 2002 Dec;30(12):1399-404.
28. Ferraris AM, Pujic N, Mangerini R, Rapezzi D, Gallamini A, Racchi O, et al. Clonal granulocytes in polycythaemia vera and essential thrombocythaemia have shortened telomeres. Br J Haematol. 2005 Aug;130(3):391-3.
29. Ferraris AM, Mangerini R, Pujic N, Racchi O, Rapezzi D, Gallamini A, et al. High telomerase activity in granulocytes from clonal polycythemia vera and
essential thrombocythemia. Blood. 2005 Mar 1;105(5):2138-40.
30. Bernard L, Belisle C, Mollica L, Provost S, Roy DC, Gilliland DG, et al. Telomere length is severely and similarly reduced in JAK2V617F-positive and
-negative myeloproliferative neoplasms. Leukemia. 2009 Feb;23(2):287-91.
31. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002 May 15;30(10):e47.
32. Liu TC, Lin SF, Chang JG, Yang MY, Hung SY, Chang CS. Epigenetic alteration of the SOCS1 gene in chronic myeloid leukaemia. Br J Haematol. 2003 Nov;123(4):654-61.
33. Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression
activity. Nat Genet. 2001 May;28(1):29-35.
34. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005 Aug;6(8):611-22.
35. von Zglinicki T, Martin-Ruiz CM. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med. 2005 Mar;5(2):197-203.
36. Verfaillie CM, Pera MF, Lansdorp PM. Stem cells: hype and reality. Hematology Am Soc Hematol Educ Program. 2002:369-91.
37. Lansdorp PM. Telomeres, stem cells, and hematology. Blood. 2008 Feb 15;111(4):1759-66.
38. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011-5.
39. Nawrot TS, Staessen JA, Holvoet P, Struijker-Boudier HA, Schiffers P, Van Bortel LM, et al. Telomere length and its associations with oxidized-LDL, carotid artery distensibility and smoking. Front Biosci (Elite Ed).
2010;2:1164-8.
40. Nordfjall K, Eliasson M, Stegmayr B, Melander O, Nilsson P, Roos G. Telomere length is associated with obesity parameters but with a gender difference.
Obesity (Silver Spring). 2008 Dec;16(12):2682-9.
41. Starr JM, Shiels PG, Harris SE, Pattie A, Pearce MS, Relton CL, et al. Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79
years from the 1932 Scottish Mental Survey. Mech Ageing Dev. 2008 Dec;129(12):745-51.
42. Capello D, Deambrogi C, Rossi D, Lischetti T, Piranda D, Cerri M, et al. Epigenetic inactivation of suppressors of cytokine signalling in Philadelphia-negative chronic myeloproliferative disorders. Br J Haematol. 2008
May;141(4):504-11.
43. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD, Jr., et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in
patients with myeloproliferative neoplasms. Blood. 2010 Apr 19.
44. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009 May
28;360(22):2289-301.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38629-
dc.description.abstract骨髓系增生疾病(Myeloproliferative neoplasms, MPNs)是骨髓系幹細胞發生異常變化使得下游的血液細胞發生過度增生所造成的一種疾病,典型的骨髓增生性疾病病人可分為真性紅血球增多症、血小板增多症和原發性骨髓纖維症。近年來有研究發現在細胞中負責保護染色體末端的端粒,其長度在骨髓增生性疾病病人中有明顯縮短的趨勢。我們藉由一對能結合至端粒重複序列的引子與一對能結合至單一基因(single copy gene)的引子,利用即時監控聚合酶連鎖反應的原理來測量各檢體的相對端粒長度--相對端粒長度(Relative telomere length)正比於端粒產物量(T)比上單一基因產物量(S)之比例(T/S ratio)。
我們分析63 位被測得有高於正常人血球數目的病人其端粒長度並與255 位測有正常血球數目的人做比較,再將此端粒長度的分析結果與其他骨髓增生性疾病突變檢測結果綜合評估。因為在正常人群組中,端粒長度會受個人的性別與年齡影響,因此這些因素在病人中亦被分別分析。
在63 位被測得有高於正常人血球數目的病人中有35 位為JAK2 V617F 陽性的病人。其中27 位V617F 陽性病人的端粒長度較同齡正常人有明顯縮短之現象。此外此端粒長度縮短的現象只有在病人的多核細胞檢體中被發現,在其單核細胞檢體中則否。而在不同性別的V617F 陽性病人比較中,女性病人與男性病人的端粒長度則沒有顯著的差異。在63 位被測得有高於正常人血球數目的病人中剩下的28 位為JAK2 V617F 陰性的病人,藉由甲基特異化聚合酶連鎖反應 (Methylation-specific PCR assay)的結果我們將V617F 陰性的病人分為在JAK2的抑制子SOCS3 promoter 有部份甲基化及無甲基化組。而在SOCS3 promoter有部份甲基化的四位病人中,都可發現其端粒長度都有較同齡正常人下降的表現。
因此實驗認為端粒長度分析可作為檢測JAK2V617F 陰性骨髓增生性疾病中於JAK2 的抑制子SOCS3 promoter 有部份甲基化的病人之另一項標的。
zh_TW
dc.description.abstractMyeloproliferative neoplasms (MPNs) are caused by several disorders of myeloid clonal stem cells and these diseases are characterized by chronic proliferation of hematopoietic precursors. There are three major types of classic myeloproliferative neoplasms: polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF), and JAK2V617F is the most common biomarker to screen the patients with classic MPNs. Recent studies have reported that telomeres, which are complexes of tandem repeats and able to protect the chromosomes against homologous recombination and non-homologous end joining during cell division, showed significant shortening in patients with MPNs.
In this study, the quantitative-PCR assay measured the relative telomere length of 63 studied patients with abnormal increased leukocyte count, or increased platelet count, or increased hemoglobin level; and then the results of the patients was compared with 255 normal controls which have normal complete blood counts (the relative telomere length was the ratio of telomere product to single-copy gene product, T/S). Due to the telomere length was affected by different genders and ages in the normal control cohort, the comparisons of the patients between different genders and ages were processed separately.
In the JAK2V617F-positive patient cohort, the results of paired comparisons showed that telomere lengths were remarkably shorter in 27 of 35 patients (27/35) than the age-matched normal controls. The telomere length shortening was observed mainly in the granulocytes but not in the mononuclear cells. Furthermore, no significant differences of telomere shortening were observed between female and maleJAK2V617F-positive patients. In addition, the mutation burden of JAK2V617F displayed no obvious correlation with telomere length shortening in the JAK2V617F-positive patient cohort.
In the JAK2V617F-negative patients, abnormal SOCS3 promoter methylation pattern was found in four patients who had significantly shorter telomere lengths than their age-matched normal controls. SOCS3 promoter methylation has been reported among the patients with PMF in the previous reports, so these four SOCS3-positive patients with shorter telomere lengths could have primary myelofibrosis. In conclusion, this data suggested that telomere length analyses may support the diagnoses in patients with SOCS3 promoter methylation but without JAK2V617F.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:39:47Z (GMT). No. of bitstreams: 1
ntu-100-R97424009-1.pdf: 10304623 bytes, checksum: 6e0139ca09a6e91e9e01e55ab7b6996d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAcknowledgement 5
Abbreviation list 6
Chinese Abstract 7
English Abstract 8
I. Introduction 10
1.1 Myeloproliferative neoplasms 10
1.2 Janus kinase 2 and JAK2V617F 11
1.3 JAK2 exon12 mutations 12
1.4 JAK2 specific insertion segment mutations 12
1.5 Methylation status of SOCSs promoter 13
1.6 MPL W515L/K mutation 14
1.7 Telomere 14
1.8 Telomere length and myeloprolerative neoplasms 15
II. Aim 17
III. Materials and methods 18
3.1 Normal control cohort and studied patient
cohort 18
3.2 Isolation of granulocytes and mononuclear cells 18
3.3 DNA samples extractions of buffy coat, granulocytes
and lymphocytes 18
3.4 Real-time quantitative PCR assay for measuring
telomere length 19
3.5 Statistical analysis 20
3.6 JAK2V617F analysis 20
3.7 JAK2 exon12 mutations analysis 21
3.8 JAK2 specific insertion segment sequencing 22
3.9 MPL W515L/K sequencing 22
3.10 Methylation status analysis of the promoter
regions of SOCSs 23
3.11 HEL cell culture 24
IV. Results 25
4.1 Standard curves for telomere and the single copy
gene 25
4.2 Telomere lengths in different genders, cell types
and ages 25
4.3 The correlation of age and telomere length 27
4.4 Telomere length measurement in the JAK2V617F-
positive patients 27
4.5 JAK2V617F burden and telomere lengths 30
4.6 Methylation status of SOCS promoters 30
4.7 Telomere length measurement in the JAK2V617F-
negative patients 31
4.8 Other molecular abnormalities in the JAK2V617F-
negative patients 32
V. Discussions 33
VI. Conclusion 37

VII.Figures 38
Figure 1 The amplification plot of telomeric and
albumin products 38
Figure 2 The standard curves for telomere and
albumin 39
Figure 3 Telomere lengths in different genders 40
Figure 4 Telomere lengths in different cell types 41
Figure 5 Correlation of relative T/S ratios and ages in
the normal individuals 42
Figure 6 The telomere lengths in V617F-positive
patients 43
Figure 7 The telomere lengths in patients with V617F-
positive between different genders 44
Figure 8 The telomere lengths in V617F-positive
patients compared with the age-matched normal
controls 45
Figure 9 The V617F mutation burden shows no
relationship with the telomere lengths 46
Figure 10 The methylation status analysis of SOCS3
promoter by MSP assay 48
Figure 11 The methylation status of SOCS1 promoter and
SOCS1 exon2 region by MSP assay 49
Figure 12 The telomere lengths in the patients without
V617F 50

VIII. Tables 51
Table 1 51
Table 2 52
Table 3 53
Table 4 54

IX. References 56

X. Supplementary Figures 61
Supplementary Figure 1 JAK-STAT pathway 61
Supplementary Figure 2 Mutations of JAK2 62
Supplementary Figure 3 The structure of telomere 63
Supplementary Figure 4 Design for telomere length
measuring by Q-PCR 65

XI. Supplementary Tables 66

XII. Supplementary List 69
Supplementary List 1 69
Supplementary List 2 72
dc.language.isoen
dc.title骨髓系增生疾病病人之端粒長度之研究:俱潛力之診斷標的zh_TW
dc.titleStudy on Telomere Length in Patients with Myeloproliferative
Neoplasms: A Potential Diagnostic Marker
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂健惠(Chien-Hui Lieu),楊雅倩(Ya-Chien Yang),顧雅真(Ya-Chen Ko),林淑萍(Su-Bin Lin)
dc.subject.keyword骨髓系增生疾病,端粒,zh_TW
dc.subject.keywordMyeloproliferative Neoplasms,telomere Length,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2011-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
10.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved