Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38603
標題: 維度(4,4)的正交糾紐李超代數的對稱張量
Symmetric Tensors in Ortho-symplectic Lie Superalgebra
of Dimension (4,4)
作者: CHIEN-YI MA
馬鑑一
指導教授: 程舜仁
關鍵字: 李代數,張量,
Lie algebra,tensor,
出版年 : 2005
學位: 碩士
摘要: 正交糾紐李超代數 osp 可用微分算子加以實現,
齊次多項式空間在它的作用下是封閉的,也就是說,
齊次多項式空間是 osp-模。
本論文旨在探討齊次多項式空間是否能分解成不可約 osp-模的直合。
我們得到的結論是對於任何奇數次的齊次多項式空間而言,都是對的。
至於偶數,在二次時即已不成立,
因而對於任何偶數次的齊次多項式空間亦不成立,
原因是它們必包含有一子模同構於二次齊次多項式空間。然而,
任意偶數次齊次多項式空間的分解問題仍未得到解決。
Ortho-symplectic Lie superalgebra osp can be realized
as differential operators and homogeneous polynomial
space is closed under its action, that is,
homogeneous polynomial space is an osp-module.
Our thesis is to study whether or not homogeneous polynomial space
can be reduced to a direct sum of irreducible osp-modules.
Our conclusion is for any odd homogeneous polynomial space,
the answer is yes. For even, the answer is no in the case
of degree 2, and therefore invalid for any even homogeneous
polynomial space since it must contain a submodule isomorphic
to degree 2 homogeneous polynomial space. However, a complete
decomposition of arbitrary even homogeneous polynomial space
has not been reached yet.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38603
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
512.1 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved