Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38584
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭永銘
dc.contributor.authorHsieh-Cheng Chenen
dc.contributor.author陳協成zh_TW
dc.date.accessioned2021-06-13T16:38:13Z-
dc.date.available2016-10-07
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-07-18
dc.identifier.citationReference
1. Lok, A.S., Prevention of hepatitis B virus-related hepatocellular carcinoma. Gastroenterology, 2004. 127(5 Suppl 1): p. S303-9.
2. Lim, S.G., et al., Prevention of hepatocellular carcinoma in hepatitis B virus infection. J Gastroenterol Hepatol, 2009. 24(8): p. 1352-7.
3. Okuda, K., Hepatocellular carcinoma. J Hepatol, 2000. 32(1 Suppl): p. 225-37.
4. Marrero, C.R. and J.A. Marrero, Viral hepatitis and hepatocellular carcinoma. Arch Med Res, 2007. 38(6): p. 612-20.
5. Hsu, H.C., et al., Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol, 2000. 157(3): p. 763-70.
6. Hsu, H.C., et al., Genetic alterations at the splice junction of p53 gene in human hepatocellular carcinoma. Hepatology, 1994. 19(1): p. 122-8.
7. Tanny, J.C., et al., An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell, 1999. 99(7): p. 735-45.
8. North, B.J. and E. Verdin, Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol, 2004. 5(5): p. 224.
9. Imai, S., et al., Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000. 403(6771): p. 795-800.
10. Landry, J., et al., The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A, 2000. 97(11): p. 5807-11.
11. Frye, R.A., Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 2000. 273(2): p. 793-8.
12. van Leeuwen, I. and S. Lain, Sirtuins and p53. Adv Cancer Res, 2009. 102: p. 171-95.
13. Lin, S.J., P.A. Defossez, and L. Guarente, Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 2000. 289(5487): p. 2126-8.
14. Kaeberlein, M., M. McVey, and L. Guarente, The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev, 1999. 13(19): p. 2570-80.
15. Bitterman, K.J., et al., Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem, 2002. 277(47): p. 45099-107.
16. Tissenbaum, H.A. and L. Guarente, Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature, 2001. 410(6825): p. 227-30.
17. Chen, D., et al., Increase in activity during calorie restriction requires Sirt1. Science, 2005. 310(5754): p. 1641.
18. Lin, S.J., et al., Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 2002. 418(6895): p. 344-8.
19. Rogina, B., S.L. Helfand, and S. Frankel, Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science, 2002. 298(5599): p. 1745.
20. Rogina, B. and S.L. Helfand, Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A, 2004. 101(45): p. 15998-6003.
21. Guarente, L. and F. Picard, Calorie restriction--the SIR2 connection. Cell, 2005. 120(4): p. 473-82.
22. Howitz, K.T., et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003. 425(6954): p. 191-6.
23. Wood, J.G., et al., Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 2004. 430(7000): p. 686-9.
24. Palacios, J.A., et al., SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol, 2010. 191(7): p. 1299-313.
25. Chen, J., et al., Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res, 2011.
26. Du, X., et al., Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol, 2004. 24(19): p. 8437-46.
27. Abdelmohsen, K., et al., Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell, 2007. 25(4): p. 543-57.
28. Ota, H., et al., Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene, 2006. 25(2): p. 176-85.
29. Back, J.H., et al., Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent inhibition of sirtuin 1. J Biol Chem, 2011.
30. Xu, D., et al., miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol, 2011. 193(2): p. 409-24.
31. Pearson, M., et al., PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature, 2000. 406(6792): p. 207-10.
32. Langley, E., et al., Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J, 2002. 21(10): p. 2383-96.
33. Chua, K.F., et al., Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab, 2005. 2(1): p. 67-76.
34. Ota, H., et al., Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol, 2007. 43(5): p. 571-9.
35. Motta, M.C., et al., Mammalian SIRT1 represses forkhead transcription factors. Cell, 2004. 116(4): p. 551-63.
36. van der Horst, A., et al., FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem, 2004. 279(28): p. 28873-9.
37. Brunet, A., et al., Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004. 303(5666): p. 2011-5.
38. Westerheide, S.D., et al., Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science, 2009. 323(5917): p. 1063-6.
39. Caito, S., et al., SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J, 2010. 24(9): p. 3145-59.
40. Dioum, E.M., et al., Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science, 2009. 324(5932): p. 1289-93.
41. Lim, J.H., et al., Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell, 2010. 38(6): p. 864-78.
42. Brachmann, C.B., et al., The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev, 1995. 9(23): p. 2888-902.
43. Martin, S.G., et al., Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell, 1999. 97(5): p. 621-33.
44. Jeong, J., et al., SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med, 2007. 39(1): p. 8-13.
45. Yuan, Z. and E. Seto, A functional link between SIRT1 deacetylase and NBS1 in DNA damage response. Cell Cycle, 2007. 6(23): p. 2869-71.
46. Oberdoerffer, P., et al., SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell, 2008. 135(5): p. 907-18.
47. Wang, R.H., et al., Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 2008. 14(4): p. 312-23.
48. Fan, W. and J. Luo, SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell, 2010. 39(2): p. 247-58.
49. Ming, M., et al., Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci U S A, 2010. 107(52): p. 22623-8.
50. Benayoun, B.A., et al., Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle: role of its regulation by the SIRT1 deacetylase. Hum Mol Genet, 2011. 20(9): p. 1673-86.
51. Yeung, F., et al., Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J, 2004. 23(12): p. 2369-80.
52. Cohen, H.Y., et al., Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004. 305(5682): p. 390-2.
53. Ford, J., M. Jiang, and J. Milner, Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res, 2005. 65(22): p. 10457-63.
54. Matsushita, N., et al., Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells, 2005. 10(4): p. 321-32.
55. Solomon, J.M., et al., Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol, 2006. 26(1): p. 28-38.
56. Brooks, C.L. and W. Gu, How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer, 2009. 9(2): p. 123-8.
57. Rodgers, J.T., et al., Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005. 434(7029): p. 113-8.
58. Moynihan, K.A., et al., Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab, 2005. 2(2): p. 105-17.
59. Picard, F., et al., Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 2004. 429(6993): p. 771-6.
60. Bordone, L., et al., Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol, 2006. 4(2): p. e31.
61. Zhang, Q., et al., Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci U S A, 2007. 104(3): p. 829-33.
62. Walker, A.K., et al., Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev, 2010. 24(13): p. 1403-17.
63. Hida, Y., et al., Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res, 2007. 299(2): p. 103-6.
64. Ozgenc, A. and L.A. Loeb, Current advances in unraveling the function of the Werner syndrome protein. Mutat Res, 2005. 577(1-2): p. 237-51.
65. Li, K., et al., Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem, 2008. 283(12): p. 7590-8.
66. Li, K., et al., Acetylation of WRN protein regulates its stability by inhibiting ubiquitination. PLoS One, 2010. 5(4): p. e10341.
67. Sakao, Y., et al., Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney. Clin Exp Nephrol, 2011.
68. de Lange, T., Protection of mammalian telomeres. Oncogene, 2002. 21(4): p. 532-40.
69. Potente, M. and S. Dimmeler, Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle, 2008. 7(14): p. 2117-22.
70. Potente, M., et al., SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev, 2007. 21(20): p. 2644-58.
71. Alcendor, R.R., et al., Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res, 2007. 100(10): p. 1512-21.
72. Bradbury, C.A., et al., Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia, 2005. 19(10): p. 1751-9.
73. Deng, C.X., SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci, 2009. 5(2): p. 147-52.
74. Jung-Hynes, B., et al., Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J Biol Chem, 2009. 284(6): p. 3823-32.
75. Luo, J., et al., Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 2001. 107(2): p. 137-48.
76. Vaziri, H., et al., hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 2001. 107(2): p. 149-59.
77. Chen, W.Y., et al., Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell, 2005. 123(3): p. 437-48.
78. Kim, E.J., et al., Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell, 2007. 28(2): p. 277-90.
79. Tseng, R.C., et al., Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients. Neoplasia, 2009. 11(8): p. 763-70.
80. Peck, B., et al., SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther, 2010. 9(4): p. 844-55.
81. Inoue, Y., et al., Suppression of p53 activity through the cooperative action of Ski and histone deacetylase SIRT1. J Biol Chem, 2011. 286(8): p. 6311-20.
82. Kim, J.E., J. Chen, and Z. Lou, DBC1 is a negative regulator of SIRT1. Nature, 2008. 451(7178): p. 583-6.
83. Zhao, W., et al., Negative regulation of the deacetylase SIRT1 by DBC1. Nature, 2008. 451(7178): p. 587-90.
84. Cha, E.J., et al., Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res, 2009. 15(13): p. 4453-9.
85. Sung, J.Y., et al., Balance between SIRT1 and DBC1 expression is lost in breast cancer. Cancer Sci, 2010. 101(7): p. 1738-44.
86. Kabra, N., et al., SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J Biol Chem, 2009. 284(27): p. 18210-7.
87. Wang, R.H., et al., Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell, 2008. 32(1): p. 11-20.
88. Firestein, R., et al., The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One, 2008. 3(4): p. e2020.
89. Koepp, D.M., et al., Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science, 2001. 294(5540): p. 173-7.
90. Amati, B., Myc degradation: dancing with ubiquitin ligases. Proc Natl Acad Sci U S A, 2004. 101(24): p. 8843-4.
91. Zhao, D., et al., The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res, 2010. 70(11): p. 4728-38.
92. Huffman, D.M., et al., SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res, 2007. 67(14): p. 6612-8.
93. Stunkel, W., et al., Function of the SIRT1 protein deacetylase in cancer. Biotechnol J, 2007. 2(11): p. 1360-8.
94. Choi, H.N., et al., Expression and role of SIRT1 in hepatocellular carcinoma. Oncol Rep, 2011.
95. Ford, J., et al., JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle, 2008. 7(19): p. 3091-7.
96. Hershko, A. and A. Ciechanover, The ubiquitin system. Annu Rev Biochem, 1998. 67: p. 425-79.
97. Baumeister, W., et al., The proteasome: paradigm of a self-compartmentalizing protease. Cell, 1998. 92(3): p. 367-80.
98. Pickart, C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001. 70: p. 503-33.
99. Dantuma, N.P. and M.G. Masucci, Stabilization signals: a novel regulatory mechanism in the ubiquitin/proteasome system. FEBS Lett, 2002. 529(1): p. 22-6.
100. Hong, E.H., et al., Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem, 2010. 285(2): p. 1283-95.
101. Nakayama, K.I. and K. Nakayama, Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer, 2006. 6(5): p. 369-81.
102. Welcker, M. and B.E. Clurman, FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer, 2008. 8(2): p. 83-93.
103. Jung-Hynes, B., et al., Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J Pineal Res, 2011. 50(2): p. 140-9.
104. Jung-Hynes, B. and N. Ahmad, Role of p53 in the anti-proliferative effects of Sirt1 inhibition in prostate cancer cells. Cell Cycle, 2009. 8(10): p. 1478-83.
105. Yeo, W., et al., A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst, 2005. 97(20): p. 1532-8.
106. Lai, C.L., et al., Doxorubicin versus no antitumor therapy in inoperable hepatocellular carcinoma. A prospective randomized trial. Cancer, 1988. 62(3): p. 479-83.
107. Saunders, L.R. and E. Verdin, Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene, 2007. 26(37): p. 5489-504.
108. Chu, F., et al., Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res, 2005. 65(22): p. 10183-7.
109. Lizard, G., et al., Induction of apoptosis in endothelial cells treated with cholesterol oxides. Am J Pathol, 1996. 148(5): p. 1625-38.
110. Deng, S., et al., Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One, 2010. 5(4): p. e10277.
111. Jiang, F., et al., Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res, 2009. 7(3): p. 330-8.
112. Magni, M., et al., Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood, 1996. 87(3): p. 1097-103.
113. Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007. 1(5): p. 555-67.
114. Su, Y., et al., Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev, 2010. 19(2): p. 327-37.
115. Marcato, P., et al., Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle, 2011. 10(9): p. 1378-84.
116. Grisendi, S., et al., Nucleophosmin and cancer. Nat Rev Cancer, 2006. 6(7): p. 493-505.
117. Naoe, T., et al., Nucleophosmin: a versatile molecule associated with hematological malignancies. Cancer Sci, 2006. 97(10): p. 963-9.
118. Kurki, S., et al., Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell, 2004. 5(5): p. 465-75.
119. Shandilya, J., et al., Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation. Mol Cell Biol, 2009. 29(18): p. 5115-27.
120. Khalil, A.A., et al., Heat shock proteins in oncology: Diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta, 2011. 1816(2): p. 89-104.
121. Deichmann, M., et al., Expression of the heat shock cognate protein HSP73 correlates with tumour thickness of primary melanomas and is enhanced in melanoma metastases. Int J Oncol, 2004. 25(2): p. 259-68.
122. Bermejo-Nogales, A., et al., Confinement exposure induces glucose regulated protein 75 (GRP75/mortalin/mtHsp70/PBP74/HSPA9B) in the hepatic tissue of gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol B Biochem Mol Biol, 2008. 149(3): p. 428-38.
123. Wadhwa, R., et al., Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res, 2002. 274(2): p. 246-53.
124. Mizukoshi, E., et al., Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochem J, 1999. 343 Pt 2: p. 461-6.
125. Myung, J.K., et al., Expressional patterns of chaperones in ten human tumor cell lines. Proteome Sci, 2004. 2(1): p. 8.
126. Bini, L., et al., Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis, 1997. 18(15): p. 2832-41.
127. Khalil, A.A., Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Sci, 2007. 98(2): p. 201-13.
128. Hwang, Y.J., et al., Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Med J, 2009. 50(3): p. 399-406.
129. Ruan, W., et al., HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma. J Exp Clin Cancer Res, 2010. 29: p. 41.
130. Dreyfuss, G., et al., hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 1993. 62: p. 289-321.
131. Masuda, K., K. Abdelmohsen, and M. Gorospe, RNA-binding proteins implicated in the hypoxic response. J Cell Mol Med, 2009. 13(9A): p. 2759-69.
132. Chou, M.Y., et al., hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol, 1999. 19(1): p. 69-77.
133. Chen, H.C., et al., An RNA helicase, DDX1, interacting with poly(A) RNA and heterogeneous nuclear ribonucleoprotein K. J Biol Chem, 2002. 277(43): p. 40403-9.
134. Ostareck-Lederer, A., et al., c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol Cell Biol, 2002. 22(13): p. 4535-43.
135. Bomsztyk, K., et al., Diverse molecular interactions of the hnRNP K protein. FEBS Lett, 1997. 403(2): p. 113-5.
136. Yang, J.P., et al., Functional interaction of Sam68 and heterogeneous nuclear ribonucleoprotein K. Oncogene, 2002. 21(47): p. 7187-94.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38584-
dc.description.abstractSIRT1是一個依賴菸鹼腺嘌呤雙核苷酸催化的去乙醯酵素,它在許多生物功能扮演重要的角色,包括對壓力的回應、凋亡、細胞內代謝機制、卡路里限制的適應、老化和癌化現象。我們發現SIRT1蛋白在肝癌中有過度表現的現象。SIRT1表現量多的樣本其腫瘤分級較高、腫瘤分期較晚期並且病人預後較差。SIRT1蛋白量上升並不是因為SIRT1 mRNA的上升。SIRT1蛋白表現量較高的肝癌細胞株其SIRT1蛋白半衰期較長。我們進而證實SIRT1的降解是經由依賴ubiquitin方式之26S蛋白酶的作用。SIRT1的過度表現會促進癌化現象和抵抗化學治療藥物的效力。此外,我們找到ㄧ些可能為SIRT1新標靶的蛋白質,包括視網膜脫氫酶1、核磷酸蛋白、熱休克同源蛋白71、熱休克蛋白60、異質核的核醣核蛋白K和異質核的核醣核蛋白H。我們發現抑制SIRT1活性會減少ALDH1酵素活性。zh_TW
dc.description.abstractSIRT1 is a NAD+-dependent deacetylase that plays crucial roles in many biological processes, including stress response, apoptosis, cellular metabolism, adaptation to calorie restriction, aging, and tumorigenesis. We find that SIRT1 protein is overexpressed in hepatocellular carcinoma. High level of SIRT1 correlates with higher tumor grade and stage and predicts poor long-term survival. The elevated SIRT1 protein is not attributable to elevation of mRNA level. The half-life of SIRT1 protein is longer in cell lines with high expression of SIRT1. We further demonstrate that SIRT1 is degraded by the 26S proteasome in an ubiquitin-dependent manner. Overexpression of SIRT1 promotes tumorigenesis and resists chemotherapeutical agent. In addition, we find some candidate proteins to be novel targets of SIRT1, including retinal dehydrogenase 1, nucleophosmin, heat shock cognate 71, heat shock protein 60, stress-70, heterogeneous nuclear ribonucleoprotein K, and heterogeneous nuclear ribonucleoprotein H. We find inhibition of SIRT1 might reduce ALDH1 enzymatic activity.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:38:13Z (GMT). No. of bitstreams: 1
ntu-100-R98444001-1.pdf: 3674661 bytes, checksum: 48ca28a62e664e3bae1877a3ae24a54e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Page
口試委員審定書                           I
謝辭                                II
中文摘要                              III
Abstract IV
Contents V
1. Introduction 1
1.1 Hepatocellular carcinoma 1
1.2 Sirtuins 1
1.3 SIRT1 is a longevity gene 2
1.4 Regulation of SIRT1 in stresses 5
1.5 SIRT1 involves in DNA damage repair and cellular apoptosis 6
1.6 SIRT1 and metabolism 8
1.7 SIRT1 and disease 9
1.8 SIRT1 acts as a tumor promoter 11
1.9 SIRT1 serves as a tumor suppressor 13
1.10 The specific aims 14
2. Materials and Methods 15
2.1 Cell culture 15
2.2 Plasmids, cotransfection, and retroviral infection 15
2.3 Immunohistochemical stain 16
2.4 Western blot 17
2.5 Protein half-life and degradation measurement 18
2.6 Immunoprecipitation 18
2.7 RNA isolation 19
2.8 RT-PCR 20
2.9 Real-Time RT-PCR 21
2.10 Anchorage-independent growth assay 21
2.11 Focus formation assay 22
2.12 Trypan blue assay 22
2.13 RNA interference 23
2.14 Tumor xenograft assay 23
2.15 2-D gel electrophoresis 24
2.16 In-gel digestion for protein identification 25
2.17 Mass spectrometry analysis 26
2.18 Detection of subG1 fraction 26
2.19 ALDEFLUOR assay 27
3. Results 28
3.1 SIRT1 was overexpressed in HCC and other types of cancer 28
3.2 Clinicopathologic significance of SIRT1 expression in HCC patients 28
3.3 The elevation of SIRT1 protein was not attributed to increased SIRT1 mRNA level 28
3.4 The half-life of SIRT1 protein was longer in cell lines with high SIRT1 expression 29
3.5 SIRT1 was degraded by the 26S proteasome in an ubiquitin-dependent manner 29
3.6 CDC4, an E3 ubiquitin ligase, was not responsible for SIRT1 degradation 30
3.7 SIRT1 knockdown did not change the ability of anchorage-independent growth and tumor xenograft growth 31
3.8 Overexpression of SIRT1 in HCC cell line promoted tumorigenesis 31
3.9 Overexpression of SIRT1 in HCC cell line reduced drug sensitivity through decreasing apoptosis 32
3.10 Identification of new targets for SIRT1 33
3.11 Inhibition of SIRT1 might decrease ALDH1 enzyme activity. 34
4. Discussion 35
5. Conclusion 45
6. Figures and Tables 47
Figure 1. Immunohistochemical stain of SIRT1 expression in representative hepatocellular carcinoma specimens. 47
Figure 2. Immunohistochemical stain of SIRT1 expression in various cancers specimens. 49
Figure 3. Kaplan-Meir analysis showed SIRT1 expression correlated with poor survival. 50
Figure 4. Detection of SIRT1 expression in tumor specimens and hepatocellular carcinoma cell lines using Western Blot, RT-PCR, and Real-Time RT-PCR.
52
Figure 5. The half-life of SIRT1 protein was longer in cell lines with highly expressed SIRT1. 54
Figure 6. Inhibition of SIRT1 protein degradation by proteasome inhibitor. 56
Figure 7. SIRT1 protein was ubiquitinated. 57
Figure 8. CDC4, an E3 ubiquitin ligase, was not a target for SIRT1. 58
Figure 9. Knockdown of SIRT1 in Hep3B cells did not alter anchorage-independent growth ability. 60
Figure 10. Knockdown of SIRT1 in SK-Hep1 cells did not alter anchorage-independent growth ability and tumor xenograft growth. 62
Figure 11. Knockdown of SIRT1 in A549 cells did not alter anchorage-independent growth ability and tumor xenograft growth. 64
Figure 12. Overexpression of SIRT1 increased focus formation. 66
Figure 13. Overexpression of SIRT1 by using lentiviral system also increased focus formation. 68
Figure 14. SIRT1 overexpression increased resistance to chemotherapy. 70
Figure 15. SIRT1 overexpression in other expression system also increased resistance to chemotherapy. 72
Figure 16. Overexpressioin of SIRT1 reduced the subG1 population inducing by treating doxorubicin. 74
Figure 17. Flow chart for searching the new targets for SIRT1 using proteomic assay. 76
Figure 18. Separation of proteins using two-dimensional (2D) gel electrophoresis and detection of acetylated protein using western blot. 77
Figure 19. SIRT1 specific inhibitor, EX-527, decreased ALDEFLOUR-positive population in Huh7-Wu cells. 80
Table 1. Univariate analysis of SIRT1 expression and clinicopathologic risk factors in patients with unifocal HCC. 51
Table 2. MASCOT search results 79
7. Reference 82
dc.language.isoen
dc.titleSIRT1在肝癌中過度表現並促進其癌化現象和抗藥性zh_TW
dc.titleSIRT1 overexpression in hepatocellular carcinoma promotes tumorigenesis and resistance to chemotherapyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林佼穎,張正琪,黃祥博
dc.subject.keyword肝癌,癌化現象,SIRT1,ubiquitin和ALDH1A1,zh_TW
dc.subject.keywordhepatocellular carcinoma,tumorigenesis,SIRT1,ubiquitin and ALDH1A1,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2011-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
3.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved