Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38575
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯逢春
dc.contributor.authorKuan-Cheng Leeen
dc.contributor.author李冠徵zh_TW
dc.date.accessioned2021-06-13T16:37:54Z-
dc.date.available2005-07-19
dc.date.copyright2005-07-19
dc.date.issued2005
dc.date.submitted2005-07-05
dc.identifier.citation1. Gurley LR, D'Anna JA, Barham SS, & Deaven LL, Tobey RA. (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur. J. Biochem. 84: 1-15
2. A Van Hooser, DW Goodrich, CD Allis, BR Brinkley, & MA Mancini. (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J. Cell Sci. 111: 3497–3506
3. Wei Y, Mizzen CA, Cook RG, & Gorovsk. (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc. Natl. Acad. Sci. U.S.A. 95: 7480–7484
4. De Souza CP, Osmani AH, Wu LP, Spotts JL, & Osmani SA.(2000)Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell. 102: 293-302.
5. Pascreau G, Arlot-Bonnemains Y, & Prigent C.(2003)Phosphorylation of histone and histone-like proteins by aurora kinases during mitosis. Prog Cell Cycle Res. 5: 369-74. Review
6. Kimura K, Rybenkov VV, Crisona NJ, Hirano T, & Cozzarelli NR.(1999) 13S Condensin Actively Reconfigures DNA by Introducing Global Positive Writhe:Implications for Chromosome Condensation. Cell. 98: 239–248
7. Kimura K, Hirano M, Kobayashi R, & Hirano T.(1998)Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science. 282(5388): 487-90.
8. Ohba T, Seki T, Azuma Y, & Nishimoto T.(1996) Premature Chromatin Condensation Induced by Loss of RCC1 Is Inhibited by GTP- and GTPγS-Ran, but Not GDP-Ran. J Biol Chem. 271(25): 14665-7
9. Andersen SSL. (2000) Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol. 10: 261-267.
10. Larsson N, Marklund U, Gradin HM, Brattsand G, & Gullberg M. (1997) Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol. 17(9): 5530-9.
11. Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, & Mattaj IW. (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell. 104(1): 83-93
12. Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, & Weis K. (2001) Importin beta is mitotic target of small GTPase Ran in spindle assembly. Cell. 104(1): 95-106
13. Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, & Zheng Y. (2001) Role of importin beta in coupling Ran to downstream targets in microtubule assembly. Science. 291(5504): 653-656
14. Gorlich D, Pante N, Kutay U, Aebi U, & Bischoff FR. (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15(20): 5584-94
15. Ribbeck K, Kutay U, Paraskeva E, & Gorlich D. (1999) The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol. 9(1): 47-50.
16. Ohba T, Nakamura M, Nishitani H, & Nishimoto T. (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science. 284(5418): 1356-8
17. Wilde A, & Zheng Y. (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science. 284(5418): 1359-62.
18. Wilde A, Lizarraga SB, Zhang L, Wiese C, Gliksman NR, Walczak CE, & Zheng Y. (2001) Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol. 3(3): 221-7
19. Dasso M. (2001) Running on Ran: nuclear transport and the mitotic spindle. Cell. 104(3): 321-4.
20. Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, & Mattaj IW. (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell. 104(1): 83-93.
21. Wittmann T, Wilm M, Karsenti E, & Vernos I. (2000) TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol. 149(7): 1405-18.
22. Merdes A, Ramyar K, Vechio JD, & Cleveland DW. (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell. 87(3): 447-58
23. Heald R, & Weis K. (2000) Spindles get the ran around. Trends Cell Biol. 10(1): 1-4
24. Sazer S, & Dasso M. (2000) The ran decathlon: multiple roles of Ran. J Cell Sci. 113(7): 1111-8.
25. Hetzer M, Gruss OJ, & Mattaj IW. (2002) The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol. 4(7): E177-84.
26. Murakami MS, & Vande Woude GF. (1997) Mechanisms of Xenopus oocyte maturation. Methods Enzymol. 283: 584-600.
27. Qian YW, Erikson E, & Maller JL. (1998) Purification and cloning of a protein kinase that phosphorylates and activates the polo-like kinase Plx1. Science. 282(5394): 1701-4.
28. Abrieu A, Brassac T, Galas S, Fisher D, Labbe JC, Doree M. (1998) The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci. 111(12): 1751-7.
29. Karaiskou A, Jessus C, Brassac T, & Ozon R. (1999) Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J Cell Sci. 112(21): 3747-56.
30. Sagata N, Oskarsson M, Copeland T, Brumbaugh J, & Vande Woude GF. (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature. 335(6190): 519-25.
31. Sagata N, Daar I, Oskarsson M, Showalter SD, & Vande Woude GF. (1989) The product of the mos proto-oncogene as a candidate 'initiator' for oocyte maturation. Science. 245(4918): 643-6.
32. Huang W, Kessler DS, & Erikson RL. (1995) Biochemical and biological analysis of Mek1 phosphorylation site mutants. Mol Biol Cell. 6(3): 237-45.
33. Gotoh Y, Masuyama N, Dell K, Shirakabe K, & Nishida E. (1995) Initiation of Xenopus oocyte maturation by activation of the mitogen-activated protein kinase cascade. J Biol Chem. 270(43): 25898-904.
34. Haccard O, Lewellyn A, Hartley RS, Erikson E, & Maller JL.(1995) Induction of Xenopus oocyte meiotic maturation by MAP kinase. Dev Biol. 168(2): 677-82.
35. Amparo Palmer, Anne-Claude Gavin, & Angel R. Nebreda. (1998) A link between MAP kinase and p34cdc2/cyclin B during oocyte maturation: p90rsk phosphorylates and inactivates the p34cdc2 inhibitory kinase Myt1. EMBO J. 17: 5037-5047
36. Marion Peter, Jean-Claude Labbé, Marcel Dorée, & Elisabeth Mandart. (2002) A new role for Mos in Xenopus oocyte maturation: targeting Myt1 independently of MAPK. Development.129: 2129-2139.
37. Susan Walsh1, Seth S. Margolis1, & Sally Kornbluth. (2003) Phosphorylation of the Cyclin B1 Cytoplasmic Retention Sequence by Mitogen-Activated Protein Kinase and Plx. Molecular Cancer Research. 1: 280-289.
38. Verlhac MH, Kubiak JZ, Weber M, Geraud G, Colledge WH, Evans MJ, & Maro B. (1996) Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development. 122(3): 815-22.
39 Kajiura-Kobayashi H, Yoshida N, Sagata N, Yamashita M, & Nagahama Y. (2000) The Mos/MAPK pathway is involved in metaphase II arrest as a cytostatic factor but is neither necessary nor sufficient for initiating oocyte maturation in goldfish. Dev Genes Evol. 210(8-9): 416-25.
40. Ohashi S, Naito K, Sugiura K, Iwamori N, Goto S, Naruoka H, & Tojo H. (2003) Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes. Biol Reprod. 68(2): 604-9.
41. Gordo AC, He CL, Smith S, & Fissore RA. (2001) Mitogen activated protein kinase plays a significant role in metaphase II arrest, spindle morphology, and maintenance of maturation promoting factor activity in bovine oocytes. Mol Reprod Dev. 59(1): 106-14.
42. Matten,W.T., Copeland,T.D., Ahn,N.G., & Vande Woude,G.F. (1996) Positive feedback between MAP kinase and Mos during Xenopus oocyte maturation. Dev. Biol. 179: 485-492.
43. Nishizawa,M., Okazaki,K., Furuno,N., Watanabe,N. , & Sagata,N. (1992) The `second-codon rule' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. EMBO J. 11: 2433-2446.
44. A. Castro, M. Peter, L. Magnaghi-Jaulin, S. Vigneron, S. Galas, T. Lorca, & J.-C. Labbe. (2001) Cyclin B/cdc2 Induces c-Mos Stability by Direct Phosphorylation in Xenopus Oocytes. Mol. Biol. Cell. 12(9): 2660 - 2671.
45. Abrieu A, Doree M, & Fisher D. (2001) The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. J Cell Sci. 114( 2): 257-67. Review.
46. Taieb, F.E., Gross, S.D., Lewellyn, A.L., & Maller, J.L. (2001) Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from Meiosis I to II in Xenopus oocytes. Curr. Biol. 11: 508-513.
47. Colledge, W.H., Carlton, M.B., Udy, G.B., & Evans, M.J. (1994) Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature. 370: 65-68.
48. Furuno N, Nishizawa M, Okazaki K, Tanaka H, Iwashita J, Nakajo N, Ogawa Y, & Sagata N.(1994)Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. EMBO J. 13(10): 2399-410.
49. Di Agostino S, Rossi P, Geremia R, & Sette C. (2002) The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development. 129(7): 1715-27.
50. Rhee K, & Wolgemuth DJ. (1997) The NIMA-related kinase 2, Nek2, is expressed in specific stages of the meiotic cell cycle and associates with meiotic chromosomes. Development. 124(11): 2167-77.
51. Lu KP, & Hunter T. (1995) Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell. 81(3): 413-24.
52. Schmitt A, Gutierrez GJ, Lénárt P, Ellenberg J, & Nebreda AR.(2002)Histone H3 phosphorylation during Xenopus oocyte maturation: regulation by the MAP kinase/p90Rsk pathway and uncoupling from DNA condensation. FEBS Letters. 518: 23-28
53. Uto, K., Nakajo, N. & Sagata, N. (1999) Two structural variants of Nek2 kinase, termed Nek2A and Nek2B, are diåerentially expressed in Xenopus tissues and development. Dev. Biol. 208: 456-464.
54. Tanaka, K., Parvinen, M. & Nigg, E. A. (1997) The in vivo expression pattern of mouse Nek2, a NIMA-related kinase, indicates a role in both mitosis and meiosis. Exp. Cell Res. 237: 264-274.
55. Uto K, & Sagata N. (2000) Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J. 19(8): 1816-26.
56. Fujioka T, Takebayashi Y, Ito M, & Uchida T. (2000) Nek2 expression and localization in porcine oocyte during maturation. Biochem Biophys Res Commun. 279(3): 799-802.
57. MH Verlhac, JZ Kubiak, HJ Clarke, & B Maro. (1994)Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development. 4: 1017-1025.
58. Zhou RP, Oskarsson M, Paules RS, Schulz N, Cleveland D, & Vande Woude GF. (1991) Ability of the c-mos product to associate with and phosphorylate tubulin. Science. 251(4994): 671-5.
59. Yew N, Strobel M, & Vande Woude GF.(1993)Mos and the cell cycle: the molecular basis of the transformed phenotype. Curr Opin Genet Dev. 3(1): 19-25.
60. Wang XM, Yew N, Peloquin JG, Vande Woude GF, & Borisy GG.(1994)Mos oncogene product associates with kinetochores in mammalian somatic cells and disrupts mitotic progression. Proc Natl Acad Sci U.S.A. 91(18): 8329-33.
61. Verlhac MH, Lefebvre C, Guillaud P, Rassinier P, & Maro B. (2000) Asymmetric division in mouse oocytes: with or without Mos. Curr Biol. 10(20): 1303-6.
62. Tatemoto H, & Muto N. (2001) Mitogen-activated protein kinase regulates normal transition from metaphase to interphase following parthenogenetic activation in porcine oocytes. Zygote. 9(1): 15-23.
63. Lefebvre, C., Terret, M.E., Djiane, A., Rassinier, P., Maro, B., & Verlhac, M.H. (2002) Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J. Cell Biol. 157: 603-613
64.. Terret ME, Lefebvre C, Djiane A, Rassinier P, Moreau J, Maro B, & Verlhac MH. (2003) DOC1R: a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes. Development. 130(21): 5169-77.
65. Masui, Y., & Markert, C.L. (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177: 129-145.
66. Sagata, N., Watanabe, N., Vande Woude, G.F., & Ikawa, Y. (1989) The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature. 342: 512-518.
67. Ferrell, J.E, Jr., Wu, M., Gerhart, J.C., & Martin, G.S. (1991) Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell. Biol. 11: 1965-19.
68. Sarcevic, B., Erikson, E., & Maller, J.L. (1993) Purification and characterization of a mitogen-activated protein kinase tyrosine phosphatase from Xenopus eggs. J. Biol. Chem. 268: 25075-25083.
69. Gross, S.D., Schwab, M.S., Lewellyn, A.L., & Maller, J.L. (1999) Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science. 286: 1365-1367.
70. Haccard, O., Lewellyn, A., Hartley, R.S., Erikson, E., & Maller, J.L. (1995) Induction of Xenopus oocyte meiotic maturation by MAP kinase. Dev. Biol. 168: 677-682.
71. Losada A, Yokochi T, Kobayashi R, & Hirano T. (2000) Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J Cell Biol. 150(3): 405-16.
72. Sumara I, Vorlaufer E, Gieffers C, Peters BH, & Peters JM. (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol. 151(4): 749-62.
73. Shirayama M, Toth A, Galova M, & Nasmyth K. (2000) APC (Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature. 402(6758): 203-7.
74. Amon A. (1999) The spindle checkpoint. Curr Opin Genet Dev. 9(1): 69-75. Review.
75. Shah JV, & Clevel DW. (2000) Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell. 103(7): 997-1000. Review.
76. Howell BJ, Hoffman DB, Fang G, Murray AW, & Salmon ED. (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol. 150(6): 1233-50.
77. Hardwick KG, Johnston RC, Smith DL, & Murray AW. (2000) MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J Cell Biol. 148(5): 871-82.
78. Abrieu A, Kahana JA, Wood KW, & Cleveland DW. (2000) CENP-E as an essential component of the mitotic checkpoint in vitro. Cell. 102(6): 817-26.
79. Sudakin V, Chan GK, & Yen TJ. (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 154(5): 925-36.
80. Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, vanrunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JH, & Kohli J. (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol. 19(5): 3515-28.
81. Tunquist BJ, Schwab MS, Chen LG, & Maller JL. (2002) The spindle checkpoint kinase bub1 and cyclin e/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr Biol. 12(12): 1027-33.
82. Duesbery NS, Choi T, Brown KD, Wood KW, Resau J, Fukasawa K, Cleveland DW, & Vande Woude GF. (1997) CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II. Proc Natl Acad Sci U.S.A. 94(17): 9165-70.
83. Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, & WeberMJ. (1998) Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol. 142(6): 1547-58.
84. Eunah Chung, & Rey-Huei Chen. (2003) Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nature Cell Biology. 5: 748–753.
85. Reimann, J.D., Gardner, B.E., Margottin-Goguet, F., & Jackson, P.K. (2001) Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev. 15: 3278-3285.
86. Reimann, J.D. , & Jackson, P.K. ( 2002) Emi1 is required for cytostatic factor arrest in vertebrate eggs. Nature. 416: 850-854
87. Reimann, J.D., Freed, E., Hsu, J.Y., Kramer, E.R., Peters, J.M., & Jackson, P.K. (2001) Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell. 105: 645-655.
88. M. P. Paronetto, E. Giorda, R. Carsetti, P. Rossi, R. Geremia, & C. Sette. (2004) Functional interaction between p90Rsk2 and Emi1 contributes to the metaphase arrest of mouse oocytes. EMBO J. 23(23): 4649 – 4659.
89. Runft, L.L., Jaffe, L.A., & Mehlmann, L.M. (2002) Egg activation at fertilization: Where it all begins. Dev. Biol. 245: 237-254
90. Mendez, R. , & Richter, J.D. (2001) Translational control by CPEB: A means to the end. Nat. Rev. Mol. Cell. Biol. 2: 521-529
91. Chen, M. , & Cooper, J.A. (1997). The subunit of CKII negatively regulates Xenopus oocyte maturation. Proc. Natl. Acad. Sci. 94: 9136-9140.
92. Chen, M., Li, D., Krebs, E.G., & Cooper, J.A. (1997) The casein kinase II beta subunit binds to Mos and inhibits Mos activity. Mol. Cell Biol. 17: 1904-1912
93. Lieberman SL, & Ruderman JV. (2004) CK2 beta, which inhibits Mos function, binds to a discrete domain in the N-terminus of Mos. Dev Biol. 268(2): 271–279
94. Robertson SC, & Donoghue DJ.(1996)Identification of an autoinhibitory region in the activation loop of the Mos protein kinase. Mol Cell Biol. 16(7): 3472-9.
95. Chen, M., & Cooper, J.A.(1995) Ser-3 is important for regulating Mos interaction with and stimulation of Mitogen-activated protein kinase. Mol. Cell. Biol. 15: 4727–4734.
96. Liu H, Vuyyuru VB, Pham CD, Yang Y, & Singh B.(1999) Evidence of an interaction between Mos and Hsp70: a role of the Mos residue serine 3 in mediating Hsp70 association. Oncogene. 18(23): 3461-70.
97. Fisher DL, Mandart E, & Doree M.(2000)Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO J. 19(7): 1516-24.
98. L Stepanova, X Leng, SB Parker, & JW Harper.(1996)Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes & Development. 10: 1491-1502.
99. John Rogers M. (1996)Rare codon usage in Escherichia coli and the expression of potentially toxic genes. Parasitol Today. 12(3): 124
100. Zhang H, & Burrows F. (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med. 82(8): 488-99.
101. Uzawa M, Grams J, Madden B, Toft D, & Salisbury JL.(1995)Identification of a complex between centrin and heat shock proteins in CSF-arrested Xenopus oocytes and dissociation of the complex following oocyte activation. Dev Biol. 171(1): 51-9.
102. Gruss OJ, & Vernos I.(2004)The mechanism of spindle assembly: functions of Ran and its target TPX2. J Cell Biol. 166(7): 949-55.
103. Takai Y, Sasaki T, & Matozaki T.(2001)Small GTP-binding proteins. Physiol Rev. 81(1): 153-208. Review.
104. Arnaoutov A, & Dasso M.(2003)The Ran GTPase regulates kinetochore function. Dev Cell. 5(1): 99-111.
105. Watrin E, & Legagneux V.(2003) Introduction to chromosome dynamics in mitosis. Biol Cell. 95(8): 507-13. Review.
106. Marston AL, & Amon A.(2004)Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol. 5(12): 983-97. Review.
107. Hauf S, & Watanabe Y.(2004)Kinetochore orientation in mitosis and meiosis. Cell. 119(3): 317-27. Review.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38575-
dc.description.abstract細胞進行有絲分裂時,細胞核當中的遺傳物質-染色體需進行一次複製、濃縮、經由紡錘體分離平均分配到兩個子細胞。進行減數分裂的生殖細胞染色體也需要經過以上等過程,但不同的是減數分裂中染色體只複製一次,而後卻有連續兩次的分離,形成單套染色體配子。顯然有絲分裂的機制在細胞行減數分裂時受到了修飾與特化。在大部分的脊椎動物裡,未成熟的卵需進行減數分裂,爾後在第二次減數分裂作停留等待受精,此一過程稱之為卵的成熟作用。

Ran系統在有絲分裂進程中參與染色體以及紡錘體狀態的調控。而Mos是減數分裂時的特有激酶,影響減數分裂時紡錘體形成、維持、變動以及染色體組態。為了探討此二者共同作用於M phase時,彼此之間交互作用狀況為何,因此選殖了鯉魚卵巢內的Mos基因異位表現於COS-1細胞,並觀察Mos與Ran是否有直接的結合。實驗結果發現,在此狀況下,針對Mos的共免疫沈澱複合物當中含有Hsp70/90等協助Mos構型的蛋白存在,而此共免疫複合沈澱物亦具有酶激活性,但卻無法偵測到Ran存在於其中。
zh_TW
dc.description.abstractAbstract
In most vertebrate animals, the development of the immature oocyte into a fertilizable gamete, a process known as oocyte maturation, involves an arrest in the meiotic cell cycle while awaiting fertilization. Mos, a serine/threonine kinase, is specifically expressed during meiotic maturation of vertebrate oocytes. After germinal vesicle breakdown (GVBD), Mos is involved in the regulation of meiotic spindle assembly and chromatin organization. The activation of this kinase is also essential for the maintenance of metaphase Ⅱ arrest.
Ran GTPase, which belongs to the Ras superfamily of small GTPase, and the protein that regulate its GTP binding and hydrolysis has a well-defined role in nuclear transport. Recent studies indicate that Ran has a central role in spindle assembly and nuclear envelope reformation. It seems that Ran system and Mos pathway coordinate in some events in M phase. To understand the inter-relationship of them, I ectopically express Carp Mos gene in COS-1 cell and investigate Mos-interacting proteins. Heat Shock Protein-Hsp70 and Hsp90 are detected in Mos co-immunoprecipitation complex with or without kinase activity, but Ran dose not exist in the complex.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:37:54Z (GMT). No. of bitstreams: 1
ntu-94-R91225014-1.pdf: 591753 bytes, checksum: 52887108fdae3bed8fc4512bfe888120 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄 …………………………………………………………… i
圖表目錄 ……………………………………………………… iii
簡寫名詞對照表 …………………………………………… iv
摘要 ………………………………………………………. vi
引言 …………………………………………………………… 1
壹、 有絲分裂的分子機制 ………………………………. 2
一、 調控染色體濃縮之分子機制 ………………….. 3
二、 調控紡錘體濃縮之分子機制 ………………….. 3
三、 Ran系統之調控功能及分子機制 ……………... 4
1. Interphase:調控細胞核內外運送物質 ……… 4
2. M phase:調控紡錘體組裝以及其他 ………... 5
貳、 減數分裂的分子機制 ……………………………….. 8
一、 meiotic resumption (GVBD) …………………… 9
二、 MⅠ/MⅡ transition …………………………….. 11
(a) 染色體濃縮 ………………………………. 11
(b) 紡錘體狀態 ………………………………. 13
三、 MⅡ arrest ………………………………………. 14
四、 CSF release ……………………………………… 16
五、 Mos的調控機制 ………………………………... 16
參、 實驗目的 ……………………………………………… 18
材料與方法 …………………………………………………… 20
一、 鯉魚卵萃取液製備 ……………………………….. 20
二、 鯉魚卵RACE cDNA基因庫製備 ………………… 20
三、 基因的選殖 ………………………………………… 21
四、 定點突變 …………………………………………… 22
五、 誘發蛋白質的表現與萃取 ………………………… 22
六、 誘發蛋白質的純化 ………………………………… 23
七、 西方轉漬法 ………………………………………… 23
八、 基因Transfection …………………………………... 24
九、 細胞蛋白質之萃取與共免疫沈澱 ………………… 24
十、 蛋白激酶之活性分析 ……………………………… 25
十一、 勝任轉型細胞的製備 …………………………. 25
十二、 In vitro transcription/translation ……………….. 26
結果 ………………………………………………………………… . 27
壹、 鯉魚c-Mos基因 …………………………………………... 27
一、 定點突變c-Mos基因 ……………………………….... 27
二、 In vitro transcription/translation ………………………. 27
三、 純化COS-1細胞表現之c-Mos蛋白 ………………... 27
四、 Kinase assay …………………………………………... 28
五、 共免疫沈澱複合物之分析 …………………………… 28
討論 ………………………………………………………………….. 38
一、 Heat shock protein與鯉魚c-Mos之活性調節 ………. 38
二、 Ran系統與c-Mos激酶途徑於M phase之調控 ….… 40
三、 未來的方向 ………………………………………….… 43
引用文獻 ……………………………………………………………... 44
圖表目錄
圖一A 鯉魚c-Mos基因K83R/K84R 點突變之部分序列 ..………. 29
圖一B In vitro transcription/translation c-Mos基因 ……..……..…... 31
圖一C 以Anti-HA抗體偵測純化COS-1細胞所表現之c-Mos
重組蛋白 …………………………………………………… 32
圖二 以Anti-phospho-Mek1抗體偵測kinase assay結果 ……… 33
圖三A 以Anti-Hsp70抗體偵測Anti-HA抗體共免疫沈澱結果 …. 34
圖三B 以Anti-Hsp90抗體偵測Anti-HA抗血清共免疫沈澱結果 … 35
圖三C 以Anti-Ran抗體偵測Anti-HA抗體共免疫沈澱結果 ……. 36
圖三D 以Anti-Ran抗體偵測Anti-HA抗體共免疫沈澱結果 ……. 37
dc.language.isozh-TW
dc.subject減數分裂zh_TW
dc.subjectRanen
dc.subjectMosen
dc.title鯉魚減數分裂基因c-Mos功能與活性調控之探討zh_TW
dc.titleFunction and Regulation of Carp c-Mosen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃火練,李明亭,黃娟娟
dc.subject.keyword減數分裂,zh_TW
dc.subject.keywordMos,Ran,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2005-07-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
577.88 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved