Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38552
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊萬發
dc.contributor.authorChia-I Leeen
dc.contributor.author李嘉宜zh_TW
dc.date.accessioned2021-06-13T16:37:08Z-
dc.date.available2008-07-12
dc.date.copyright2005-07-12
dc.date.issued2005
dc.date.submitted2005-07-06
dc.identifier.citationAktor, H., 1994. Continuous high-rate removal of chromate in a fluidized bed without sludge generation. Water Sci. Technol., 30, 31-40.
Al-Degs, Y., Khraisheh, M. A. M., Tutunji, M. F., 2001. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res., 35, 3724–3728.
Battistoni, P., Pavan, P., Prisciandaro, M., Ceochi, F., 2000. Struvite crystallization: a feasible and reliable way to fix phosphorous in anaerobic supernatants. Water Res., 34, 3033-3041.
Bowden, J. W., Posner, A. M., Quirk, J. P.,1977. Ionic adsorption onvariable charge mineral surfaces, Aust. J. Soil Res., 15, pp.121.
Brunauer, S., Emmett, Teller E., 1938. Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309.
Carman, P. C., 1956, Flow of Gases Through Porous Media, Butterworths, London, Chap. 1.
Chen, J. P., Yu, H., 2000. Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor. J. Environ. Sci. Health A35, 817-835.
Chou, S., Liao, C-C., Perng, S-H., Chang, S-H., 2004. Factors influencing the preparation of supported iron oxide in fluidized-bed crystallization. Chemosphere 54, 859-866.
Corapcioglu, M.O., 1982. Adsorption characteristic of Cu(Ⅱ), Pb(Ⅱ), Ni(Ⅱ), and Zn(Ⅱ) onto activated carbon surface in dilute aqueous solution: Ther effect of complex formation, Ph.D. Thesis, University of Delaware.
David R. L., 1995. Handbook of Chemistry and Physics, 76th edn. CRC Press, U.S.A.
Donnert, D., Salecker, M., 1999. Elimination of Phosphorus from waste water by crystallization. Environ. Technol., 20, 735-742.
Fair, G. M., Geyer, J. C., 1954. Water supply and waste-water disposal, with a chapter on water chemistry by John Morris New York : Wiley.
Freundlich, H., 1926. Clloid and Capillary Chemistry, Metheun, London.
Gadde, R. R., Laitinen, H. A., 1974. Studies of Heavy Metal Adsorption by Hydrous Iron and Manganese Oxides, Ana. Chem., 46, 2022-2026.
Gardea-Torresdey, J. L., Tang, L., 1996. Salvador, J. M., Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances, Journal of Hazardous Materials. 48 , 191-206.
Giesen, A., 1997. Zero waste: pellet reactor for the removal of heavy metal, phosphate, fluoride and hardness at low costs. In: Proceedings of the 22nd Wastewater Treatment Conference, Taiwan, 507-511.
Giesen, A., 1999. Crystallisation Process enables Environmental Friendly phosphate Removal at Low Costs. Environ. Technol., 20, 769-775.
Guillard, D., Lewis, Alison E., 2002. Optimization of Nickel hydroxycarbonate precipitation using a laboratory pellet reactor. Ind. Eng. Chem. Res., 41, 3110-3114.
Harms, W. D., Robinson, R. B., 1992. Softening by fluidized bed crystallizers. J. Environ. Eng. ASCE 118, 513-529.
Ho, Y-S., 2003. Removal of copper ions from aqueous solution by tree fern. Water Res. 37, 2323-2330.
Huang, C. P., Elliott H. A., 1981. Adsorption characteristics of some Cu(Ⅱ) complexes on aluminosilicates, Water Res, 15, 849-856.
Kanungo, S.B., Paroda, K.M., 1984. Interfacial behavior of some synthetic MnO2 samples during their adsorption of Cu2+ and Ba2+ from aqueous solution at 300°K. J. Colloid Interf. Sci., 98, 245- 252.
Katsoyiannis, Ioannis A., Zouboulis Anastasios I., 2002. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res., 36, 5141–5155.
Kawamura, S., 1975. Design and operation of high rate filters – Part 2. Journal Am. Water Wrks Ass., 653-662.
Keane, M., 1998. The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers. Colloids and Surfaces A: Physicochem. Eng. Aspects 138, 11-20.
Kim, Moon-Sun., Hong, Kyo-Min., Chung, Jaygwan G., 2003. Removal of Cu(II) from aqueous solutions by adsorption process with anatase-type titanium dioxide. Water Res., 37, 3524–3529.
Kinniburgh, D. G.,Jackson, M. L., 1981. Cation Adsorption by Hydrous Metal Oxides and Clay, in Adsorption of Inorganics at Solid-Liquid Interfaces, M. A. Anderson and A.J. Rubin (eds.), Ann Arbor Science, Ann Arbor, Mich., 91-160.
Lai, C. H., Lo, S. L., Lin, C. F., 1994. Evaluating an iron-coated sand for removing copper from water. Water Sci. Technol., 30, 175-182.
Lai, C. L., Lin, S. H., 2004. Treatment of chemical mechanical polishing wastewater by electrocoagulation: system performances and sludge settling characteristics. Chemosphere 54, 235-242.
Langmuir, I., 1918. Ther adsorption of gases on plane surfaces of glass, mica, and platinum, J. Am. Chem. Soc., 40, 1361.
Loganathan, P., Burau, R.G., 1973. Sorption of heavy metal ions by a hydrous manganese oxide: Geochimica et Cosmochimica Acta, 37, 1277-1293.
Martell A.E., Smith R. M., 1976. Critical Stability Constants, Plenum Press, New York.
McCabe, W. L., Smith, J. C., Harriott, P., 1993. Unit operations of chemical engineering. McGrae-Hill, New York, 143-180.
McKenzie, R. M., 1989. Manganese oxides and hydroxides. Chap. 9, 439-465. In J. B. Dixon and S. B. Weed (ed.) Minerals in soil environments. Published by Soil Sci. Soc. Am., Madison, WI.
Mersmann, A., 1999. Crystallization and Precipitation. Chem. Eng. Processing, 38, 345–353.
Morel, F.M., 1983. Principles of aquatic chemistry, John Wiley, New York.
Morel, F. M. M., Hering, J. G., 1993. Principles and Applications of Aquatic Chemistry, Wiley, New York, 332–342.
Morrill, L. G., Mahilum, B. C., Mohiuddin, S. H., 1982. Sorption degradation and persistence. Organic Compounds in Soils, Ann Arbor Sci. Publishers.
Murray, J. M., 1975. The interaction of metal ions at the manganese dioxide-solution interface. Geochim. Cosmochim. Acta. 39, 505–519.
Nielsen, A. E., 1984. Electrolyte crystal growth mechanisms. J. Crystal Growth 67, 289-310.
Nielsen, P. B., Christensen, T. C., Vendrup, M., 1997. Continuous removal of heavy metals from FGD wastewater in a fluidized bed without sludge generation. Water Sci. Technol., 36, 391-397.
Noh, J. S., Schwarz, J. A., 1989, Estimation of the Point of Zero Charge of Simple Oxides by Mass Titration,J. Colloid Interf Sci., 130, June.
Paras Trivedi and Lisa Axe. 1999. A Comparison of Strontium Sorption to Hydrous Aluminum, Iron, and Manganese Oxides Journal of Colloid and Interface Science 218, 554–563.
Parida, Kulamani, Satapathy, Pramod K., Das, Nigamananda, 1996. Studies on Indian Ocean Manganese Nodules IV. Adsorption of Some Bivalent Heavy Metal Ions onto Ferromanganese Nodules. J. Colloid Interface Sci., 181, 456–462.
Parks, G.A., 1975. Adsorption in ther marine environment, in Chemical Oceanography, Academic Press New York,1975.
Rodda, D. P., Wells, J. D., Johnson, B. B., 1996. Anomalous Adsorption of Copper ( II ) on Goethite. J. Colloid interf. Sci., 184, 564–569.
Sahoo, R. N., Das, S. C., Reddy, B. R., Rath, P. C. Das, R. P., 2001. Adsorption of copper on manganese nodule residue obtained from NH3 –SO2 leaching. Hydrometallurgy, 62, 185–192.
Sarfarazi, F., Ghoroghchian, J., 1994. Electrochemical Copper Removal from Dilute Solutions by Packed Bed Electrodes. Microchem. J. 50, 33-43.
Schindler, P.W., 1981. Surface Complexes at Oxide Water Interfaces, in Adsorption of Inorganics at Solid Liquid Interfaces, Ann Arbor Science, Ann Arbor, Mich., pp.1-49.
Schöller, M., van Dijk, J. C., Wilms, D., 1987. Recovery of heavy metals by crystallization. Metal Finishing, 85, 31-34.
Schöller, M., van Dijk, J. C., Wilms, D., 1991. Fluidized bed Pellet reactor to Recovery metals or anions. Metal Finishing, 89, 46-50.
Schöller, M., Van Dijk, J.C., Van Haute, A., Wilms, D., Pawlowski, L., Wasag, H., 1987. Recovery of Heavy Metals by Crystallization in the Pellet Reactor, a Promising Development. 6th, International Conference Chemistry for the Protection of the Environment, 77.
Schuiling, R. D., Andrade, A., 1999. Recovery of struvite from calf manure. Environ. Technol., 20, 765-768.
Schwarz, J. A., Driscoll, C. T., Bhanot, A. K., 1984. Zero Point of Charge of Silica-Alumina Oxide Suspeusions. J. Colloid Int. Sci., 97, 55-61.
Scott, Michael J., Morgan, James J., 1996. Reactions at Oxide Surfaces. 2. Oxidation of Se(IV) by Synthetic Birnessite. Environ. Sci. Technol. 30, 1990-1996.
Seckler, M. M., Bruinsma, O. S. L., van Rosmalen, G. M., 1996. Calcium phosphate precipitation in a fluidized bed in relation to process conditions: a black box approach. Water Res. 30, 1677-1685.
Serrano G., J., Garcia D., O. C., 1998. Ce3+ adsorption by hydrated MnO2 J. Radioanalytical and Nuclear Chem., 230, 33-37.
Sigg, L. and Stumm, W., 1981. The Interaction of Anions and Weak Acids with the Hydrous Goethite (α-FeOOH) Surface, Colloids Surf. 2, 101-117.
Smith, R. M., Martell, A. E., 1976. Critical Stability Constants, 4, Plenum Press, New York.
Sohnel, O., 1983. Metastable Zone of Solution. Chem. Eng. Res. Des., 61, 186.
Söhnel, O., Garside, J., 1992. Precipitation–Basic Principles and Industrial Applications. Butterworth–Heinemann, London.
Stumm, W., Bilinski, H., 1972. Trace metals in natural waters: difficulties if interpretation arising from our ignorance on their speciation, Proc. 6th Int. Conf. Water Pollut. Res., Pergamon Press, New York.
Stumm, W., Hohl, H., Dalang, F., 1976. Interaction of metal ions with hydrous oxide surfaces. Groatica Chem. Acta., 48, 491-504.
Stumm, W., Morgan, J. J., 1996. Aquatic Chemistry, third ed. Wiley- Interscience, John Wiley, New York.
Sun, J., Huang, J. C., 2002. Co-removal of Hexavalent Chromium during Copper Precipitation. Water Sci. Technol., 46, 413-419.
Sundstrom, D. W., Kiei, H. E., 1979. Wastewater Treatment, Prentice-Hall, Inc. Englewood Cliffs, NJ.
Tai, C. Y., Lin, C. H., 1987. Crystal growth kinetics of the two-step model. J. Crystal Growth, 82, 377-385.
Tatsuhiko Suzuki, Norihito Tambo, 1993. A New Sewage Treatment System with Fluidized Pellet Bed Separator. Water Sci. Technol., 46, 413-419.
Taylor, R. M., McKenzie, R. M., 1966. The association of manganese and cobalt in soils- further observations. J. Soil Sci., 19, 77-80.
van den Broeck, K., van Hoornick, N., van Hoeymissen, J., de Boer, R., Giesen, A., Wilms, D., 2003. Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor. IEEE Trans. Semicond. Manuf. 16, 423-428.
van Dijk, J. C., Braakensiek, H., 1984. Phosphate removal by crystallization in fluidized bed. Water Sci. Technol., 17, 133-142.
van Dijk, J. C., Wilms, D. A., 1991. Water treatment without waste material-fundamentals and state of the art of pellet softening. J. Water SRT-Aqua. 40, 263-280.
Wang, X. C., Tampo, N., Matsui, Y., 1993. Kinetic study of fluidized pellet bed processes, I. Characteristics of particle motions. J. Water SRT-Aqua. 42, 146-154.
Weber, J., Walter, 1972. Adsorption in Physico-chemical Process-for Water Quality Control, John Wiley, New York.
White, W. C., 1972. Handbook of Chlorination, Van Nostrand Reinhold Company, New York.
Willard, D. Harms, Robinson, R. Bruce, 1992. Softening by fluidized bed crystallizers. J. Environ. Eng., 118, August.
Wilms, D. A., Vercamst, K., Dijk, J. C., 1992. Recovery of silver by crystallization of silver carbonate in a fluidized-bed reactor. Water Res., 26, 235-239.
Wilms, D., Buldeo Rai P., Van Dijk J. C. Schöller M., 1988. Recovery of nickel by crystallizationof nickel carbonate in a fluidized-bed reactor. In water pollution Control in Asia (Edited by Panswad T., Polprasert C. and Yamamoto K.), 449-456. Pergamon Press, Oxford.
Wilms, D., van Haute, A., van Dijk, J. C., Schöller, M., 1988. Recovery of nickel by crystallization of nickel carbonate in a fluidized bed reactor. Proceedings Second IAWPRC Asian Conference on Water Pollution Control, Bangkok, Thailand, 9-11 November, 449-456.
Yao, Wensheng, Millero, Frank J., 1996. Adsorption of Phosphate on Manganese Dioxide in Seawater. Environ. Sci. Technol. 30, 536-541.
Zhou, P., Huang Ju-Chang, Alfred W. F. LI., Wei, S., 1999. Heavy Metal Removal From Wastewater in Fluidized Bed Reactor. Water Res., 33, 1918-1924.
王明光, 2000. 土壤環境礦物學. 藝軒圖書出版社. 141-168.
李茂松, 1993. 流體化床結晶技術在無機廢水處理上應用性研究, 私立中原大學化學研究所, 碩士論文.
曹志明, 1994. 氟化鈣結晶動力學之研究, 國立台灣大學化學工程學研究所, 碩士論文.
陳仲裕, 1995. 碳酸鈣在流體化床中成長動力學之研究, 國立台灣大學化學工程學研究所, 碩士論文.
陳寶祺, 1992. 微溶物係之沈澱與結晶, 國立台灣大學化學工程學研究所, 博士論文.
楊萬發,84年.水及廢水處理化學,茂昌圖書有限公司。
電鍍業資源化應用技術手冊,經濟部工業局, 2002。
簡豪挺, 2002. 重金屬污泥結合型態對化學萃取重金屬效率之影響,成功大學環境工程研究所,碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38552-
dc.description.abstract本文應用流體化床反應槽為本體,分別應用流體化床結晶及吸附二種技術處理含銅廢水,以解決傳統含重金屬廢水處理所衍生之大量污泥之問題。
在應用流體化床結晶技術處理含銅廢水部分,分別針對最小流體化速度、銅離子與結晶試劑介穩區及最佳銅離子去除條件,加以研究。應用流體化床結晶技術處理含銅廢水需將操作條件控制於低過飽和度,以使得銅離子以核沉澱方式包覆於流體化床內之擔體表面。本實驗中相關之影響因子包括:pH值、結晶試劑與銅離子之莫耳比、水力負荷及結晶試劑種類等。實驗結果指出: 由介穩區之界定結果顯示當結晶試劑與銅離子之莫耳比([CT]/[Cu])=2時,相對之銅離子濃度限制為40 mg/L,然而在實際之流體化床反應槽操作下,因其流體化之擔體進行高速運動,形同一種快速攪拌行為,因此對於進流銅離子濃度限制較高為20 mg/L。當進流銅離子濃度為10 mg/L時,出流水銅離子去除率可達96%;最佳之結晶試劑為Na2CO3;最佳之結晶試劑與銅離子之莫耳比([CT]/[Cu])為2;水力負荷方面則不宜超過30 m/H。此外,避免於流體化床反應槽內發生沉澱反應(homogeneous nucleation)亦為一項非常重要之操作因子。一旦於流體化床反應槽內發生沉澱反應將導致出流水銅離子濃度增加,而將進流廢水與結晶試劑於流體化床擔體內進行混合,將可有效的降低於反應槽底部所發生之沉澱現象。針對結晶物分別利用掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)針對樣品表面進行觀察及照相,本實驗所使用之機種配有能量散射光譜儀(Energy Dispersive X-ray Spectrum, EDS),可同時針對樣品進行定性分析。而利用元素分析儀之分析結果推估結晶物中CuCO3及Cu(OH)2所佔之比例分別為46%及54%。
在應用流體化床吸附技術處理含銅廢水部分,本實驗係利用將錳砂填充於反應槽內做為吸附劑,利用將填充之錳砂以流體化方式,以有效去除廢水中之銅離子。本實驗中分別針對錳砂之吸附特性、錳砂對銅離子之吸附平衡及流體化床內錳砂對於銅離子之去除成效加以探討。
在錳砂表面性質及其吸附特性方面,利用掃瞄式電子顯微鏡針對樣品表面進行觀察及照相,並利用能量散射光譜儀進行錳砂之組成分分析,錳砂中重金屬錳含量利用消化方式測量結果約為8.03 mg-Mn/g-錳砂。實驗結果指出:利用流體化床反應槽內填充錳砂去除廢水中之銅離子,銅離子之去除受pH值高度影響,當pH值增加時,銅離子去除率亦隨之提升,而當錳砂吸附銅離子結束後,溶液中之pH值呈現下降情形。當錳砂添加量大於10 g/L時,應用流體化床反應槽去除銅離子之效果與傳統應用振盪器去除銅離子之效果幾乎相等,而當錳砂添加量達40 g/L時,應用流體化床反應槽吸附銅離子之效果則大於使用振盪器吸附銅離子之效果。此結果顯示於反應槽中添加錳砂做為吸附劑並將其流體化後,吸附劑表面之吸附位址(sites)可有效被利用。在等溫吸附實驗方面,利用錳砂吸附廢水中銅離子之實驗結果符合Langmuir等溫吸附方程式。此外,實驗結果亦顯示:當於溶液中進行曝氣時,有助於銅離子於錳砂表面之吸附。
zh_TW
dc.description.abstractIn this study, a fluidized-bed reactor (FBR) was employed to treat copper-containing wastewater by mean of copper precipitation on the surface of sand grains and adsorpted by manganese-coated sand (MCS).
In the study of copper crystallization on the sand surface, the conditions for optimum copper removal efficiency were also investigated. This technology was controlled so as to keep supersaturation low to induce the nucleated precipitation of copper coating on the sand surface in an FBR. The effects of relevant parameters, such as the pH value, the molar ratio of [CT] to [Cu], hydraulic loading and the types of chemical reagents used, were examined. The experimental results indicated that 96% copper removal efficiency could be achieved when the influent copper concentration was 10 mg/L. The optimum chemical reagent was Na2CO3; the molar ratio of [CT]/[Cu] was 2, and the optimal hydraulic loading was not be more than 30 m/h. In addition, preventing homogeneous nucleation in the FBR was an important operation parameter. Homogeneous nucleation and molecular growth would lead to undesirable microparticle formation in the effluent. A good mixture of carbonate and copper in the presence of sand grains could reduce the level of homogeneous nucleation in the bottom of the reactor. Energy Dispersive Analysis (EDS) of X-rays provided insight into the copper coating on the sand surface, and element analysis indicated the weight percentages of CuCO3 and Cu(OH)2 in precipitate are 46% and 54%.
Besides, by using of MCS to treat copper containing wastewater, it was performed in a fluidized-bed reactor (FBR) filled with MCS to treat copper-contaminated wastewater. The adsorption characteristics of MCS, the adsorption equilibrium of MCS, and the copper removal capacity by MCS in FBR were investigated. In terms of the adsorption characteristics of MCS, the surface of MCS was evaluated using a scanning electron microscope (SEM). Energy Dispersive Analysis (EDS) of X-rays indicated the composition of MCS, and the quantity of manganese on MCS was determined by means of acid digestion analysis. The experimental results indicated that copper was removed by both sorption (ion exchange and adsorption) and coprecipitation on the surface of MCS in FBR. Copper removal efficiency was highly dependent on the pH and increased with increasing pH from pH 2 to 8. After the copper adsorption by MCS, the pH in solution was decreased. When the MCS concentration was greater than 10 g/L, the copper adsorptivities obtained by FBR were almost the same as that from the shaker and when the MCS concentration reached 40 g/L, the copper adsorptivity in FBR was greater than that from the shaker. The adsorption sites of MCS could be used efficiently by the FBR. A Langmuir adsorption isotherm equation fit the measured adsorption data from the batch equilibrium adsorption test better than the Freundlich adsorption isotherm equation did. In addition, the adsorption rate increased when the influent wastewater was aerated.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:37:08Z (GMT). No. of bitstreams: 1
ntu-94-D91541004-1.pdf: 906760 bytes, checksum: 6951ce6f1e0b6f3e487a67b39eb02ece (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents誌謝……………………………………………………..…… I
中文摘要………………………………………………….…… II
英文摘要………………………………………………………… V
目錄………………………………………………………...… VI
圖目錄……………………………...………………………… XI
表目錄……………….………………………………………… XV
符號說明………………………………………………...… XVII
第一章 前言 ……………………………………… 1
1.1 研究背景 ……………………………………… 1
1.2 研究目標 ……………………………………… 2
第二章 文獻回顧 …………………………………………… 5
2.1重金屬廢水來源及特性………………………………… 5
2.1.1印刷電路板廢水特性 ……………………… 5
2.1.2電鍍業廢水特性 ……………………… 9
2.2以結晶技術去除廢水中重金屬之基本理論…………… 12
2.2.1 微溶物系過飽和度 ……………………… 12
2.2.2過飽和溶液之介穩區 ……………………… 13
2.2.3 晶體之成核現象 …………………………… 14
2.3 吸附理論 …………………………………………… 20
2.3.1吸附現象之分類 ……………………………… 20
2.3.2 吸附模式 ……………………………………… 23
2.3.3 影響吸附反應之因子…………………………… 28
2.4重金屬氧化物及重金屬之水化特性……….…… 32
2.4.1 重金屬氧化物水合現象………………….…..… 32
2.4.2 重金屬之水化特性…….……..………………… 36
2.4.3 水合金屬氧化物吸附水中陰/陽離子之相關研究… 39
2.5錳砂(Manganese-Coated Sand)吸附特性……….…… 43
2.5.1 錳氧化物之表面物化特性………………....…… 43
2.5.2 錳氧化物之種類及結構………………....…… 45
2.5.3 錳之水化特性……………..………………....…… 45
2.5.4 錳之氧化動力學……………..……………....…… 48
2.6流體化床操作技術原理與應用……………………… 49
2.6.1 流體化床水力學……………………….…..… 49
2.6.2 流體化床結晶原理…….……..………………… 53
2.6.3 流體化床之發展與應用……………..……………… 54
2.7流體化床結晶去除銅離子之質量平衡式………………… 61
第三章 實驗方法 …………………………………………… 63
3.1 流體化床結晶試驗 …………………………… 63
3.1.1 介穩區之介定實驗……………………………… 63
3.1.2 流體化床最小流體化速度之測定……………… 64
3.1.3 實驗設備、材料及方法…………………………… 69
3.1.4批次式化學混凝實驗…………………………… 72
3.1.5結晶/沉澱物特性分析…………………………… 72
3.2 流體化床吸附試驗 ………………..……………… 76
3.2.1實驗設備………………………...……….………… 76
3.2.2實驗材料………………………...……….………… 76
3.2.3實驗方法………………………...……….………… 78
3.3分析方法 …………………………………….………… 83
3.4分析儀器 ………………………………………………… 83
第四章 結果與討論 ………………………………………… 85
4.1流體化床結晶方式去除廢水中銅離子………………… 85
4.1.1碳酸銅之介穩區試驗結果………………………… 85
4.1.2 比銅離子負荷之影響…..…………………..……. 94
4.1.3加藥比([CT]/[Cu])及pH值之影響……..………… 98
4.1.4 水力負荷(Hydraulic Loading)之影響………… 102
4.1.5 結晶藥劑之選擇…………….…..……………… 109
4.1.6形成沉澱物之影響 ……………………………… 114
4.1.7 沉澱物及結晶物成份分析……………………… 117
4.1.8 模擬廢水之處理……………………...….……… 120
4.2流體化床吸附試驗…………………………………… 135
4.2.1 錳砂(Manganese-Coated Sand)表面特性分析 135
4.2.2錳砂添加量對銅離子去除效率之影響………… 138
4.2.3 pH值之影響及吸附過程中pH值變化情形………140
4.2.4錳砂吸附平衡探討………………..…………… 144
4.2.5 銅離子吸附過程中錳離子釋出情形…………… 149
4.2.6曝氣作用對於銅離子去除之影響…………… 151
4.2.7 恆溫動力脫附試驗…………………………...… 153
第五章 結論與建議 …………………………………….……… 159
5.1結論……………………………….………..…………… 159
5.1.1以流體化床結晶方式去除廢水中銅離子…..…… 159
5.1.2以流體化床吸附方式去除廢水中銅離子…… 162
5.2建議………………………..…………….……………… 163
參考文獻……………………………………………………… 164
dc.language.isozh-TW
dc.subject沉澱zh_TW
dc.subject均相成核zh_TW
dc.subject流體化床反應槽zh_TW
dc.subject錳砂zh_TW
dc.subject吸附zh_TW
dc.subject過飽和zh_TW
dc.subjectadsorptionen
dc.subjectprecipitationen
dc.subjectsupersaturationen
dc.subjectmanganese-coated sanden
dc.subjectcopper removalen
dc.subjectFluidized-bed reactoren
dc.subjecthomogeneous nucleationen
dc.title以流體化床反應器處理含銅廢水之研究zh_TW
dc.titleStudies of Copper Removal from Wastewater in the Fluidized-Bed Reactoren
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee駱尚廉,李公哲,林正芳,謝永旭,張鎮南
dc.subject.keyword流體化床反應槽,過飽和,沉澱,均相成核,錳砂,吸附,zh_TW
dc.subject.keywordFluidized-bed reactor,copper removal,supersaturation,precipitation,homogeneous nucleation,manganese-coated sand,adsorption,en
dc.relation.page175
dc.rights.note有償授權
dc.date.accepted2005-07-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
885.51 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved