請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38543
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖中明 | |
dc.contributor.author | Jeng-Wei Tsai | en |
dc.contributor.author | 蔡正偉 | zh_TW |
dc.date.accessioned | 2021-06-13T16:36:49Z | - |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-06 | |
dc.identifier.citation | Abbas R, Hayton WL. 1997. A physiological based pharmacokinetic and pharmacodynamic model for paraoxon in rainbow trout. Toxicol Appl Pharm 145:192-201.
Aposhian HV, Aposhian MM. 1989. Newer developments in arsenic toxicity. J Am Coll Toxicol 8:1297-1305. Ariens EJ, Simonis AM. 1964a. A molecular basis of drug action. J Pharm Pharmacol 16:137-157. Ariens EJ, Simonis AM. 1964b. A molecular basis of drug action. The interaction of one or more drugs with different receptors. J Pharm Pharmacol 16:1298-1312. Balasubramanian PR, Bai RK. 1996. Biogas plant-effluent as an organic fertilizer in monosex, monoculture of fish (Oreochromis mossambicus). Biores Technol 55:119-124. Barata C, Baird DJ. 2000. Determining the ecotoxicological mode of action of chemicals from measurements made on individuals: results from instar-based tests with Daphnia magna Straus. Aquat Toxicol 48:195-209. Barber MC. 2003. A review and comparison models for predicting dynamic chemical bioconcentration in fish. Environ Toxicol Chem 22:1963-1992. Bergman HL, Dorward-King, EJ. 1997. Reassessment of metals criteria for aquatic life protection: priorities for research and implementation. SETAC pelleston workshop on reassessment of metals criteria for aquatic life protection, 10-14 February, 1996, Pensacola, SETAC press, Pensacola, FL, pp 114. Beyers DW, Rice JA, Clements WH, Henry CJ. 1999. Estimating physiological cost of chemical exposure: integrating energetics and stress to quantify toxic effects in fish. Can J Fish Aquat Sci 56:814-822. Borgmann U, Norwood WP, Babird IM. 1991. Relationship between chronic toxicity and bioaccumulation of cadmium in Hyalella azteca. Can J Fish Aquat Sci 48: 1055-1060. Bourne DWA. 1995. Mathematical modeling of pharmacokinetic data. Lancaster, Pen: Technomic Publishing Company, Inc. pp 139. Chen CY, Folt CL. 2000. Bioaccumulation and diminution of arsenic and lead on a freshwater food web. Environ Sci Technol 34:3878-3884. Chen CM, Yu SC, Liu MC. 2001. Use of Japanese medaka (Oryzia latipes) and tilapia (Oreochromis mossambicus) in toxicity tests on different industrial effluents in Taiwan. Arch Environ Contam Toxicol 40:363-370. Cho EA, Bailer, AJ, Oris, JT. 2003. Effect of methyl tert-butyl ether on the bioconcentration and photoinduced toxicity of fluoranthene in fathead minnow larvae (Pimephales promelas). Environ Sci Technol 37: 1306-1310. Clason B, Duquesne S, Liess M, Schulz R, Zauke GP. 2003. Bioaccumulation of trace metals in the Antarctic amphipod Paramoera walkeri (Stebbing, 1906): comparison of two compartment and hyperbolic toxicokinetic models. Aquat Toxicol 65:117-140. Cockell, KA, Hilton, JW, Bettger, WJ. 1992. Hepatobiliary and hematological effects of dietary di sodium arsenate heptahydrate in juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 103C, 453–458. Congdon JD, Dunham AE, Hopkins WA, Rowe CL, Hinton TG. 2001. Resource allocation-based life histories: A conceptual basis for studies of ecological toxicology. Environ Toxicol Chem 20:1698-1703. Cooper CM, Gillespie Jr WB. 2001. Arsenic and mercury concentrations in major landscape components of an intensively cultivated watershed. Environ Pollut 111:67-74. Crompton TR. 1997. Toxicants in the aqueous ecosystem. Chicester, UK: Wiley. Davidovitz G, D’Amico LJ, Nijhout HF. 2003 Critical weight in the development of insect body size. Evol Dev 5:188-197. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ. 1994. Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact 90:139-155. DeLonay AJ, Little EE, Woodward DF, Brumbaugh WG, Farag AM, Rabeni CF. 1993. Sensitivity of early-life-stage golden trout to low pH and elevated aluminium. Environ Toxicol Chem 12:1223-1232. De Schamphelaere KAC, Janssen CR. 2004. Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss): Comparison with other fish species and development of a biotic ligand model. Environ Sci Technol 38: 6201-6209 De Schamphelaere KAC, Stauber JL, Wilde KL, Markich SJ, Brown PL, Franklin NM, Creighton NM, Janssen CR. 2005. Toward a biotic ligand model for freshwater green algae: surface-bound and internal copper are better predictors of toxicity than free Cu2+-ion activity when pH is varied. Environ Sci Technol 39:2067-2072. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383-2396. Dineley KE, Votyakova TV, Reynolds IJ. 2003. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. Neuro Chem 85:563-70. Dixon HBF. 1997. The biochemical action of arsenic acids especially as phosphate analogues. Adv Inorg Chem 44:191-227. Dojlido JR, Best GA. 1993. Chemistry of water and water pollution control. New York: Ellis Horwood. Eisler R. 1994. A review of arsenic hazards to plants and animals with emphasis of fishery and wildlife resources. In: Nriagu JO, ed. Arsenic in the environment. Volume II. New York: Wiley. pp 185-260. Escher BI, Hermens JLM. 2002. Mode of action in ecotoxicology: their role in body burdens, species sensitivity, QSARS, and mixture effects. Environ Sci Technol 36:4201-4217. Escher BI, Hermens JLM. 2004. Internal exposure: linking bioavailability to effects. Environ Sci Technol38: 455A-462A. European Commission. 2003. Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances, commission regulation (EC) No. 1488/94 on risk assessment for existing substances and directive 98/8/EC of the European parliament and of the council concerning the placing of biocidal products on the market. Fargasova A. 1998. Comparative acute toxicity of Cu2+, Cu+, Mn2+, Mo6+, Ni2+ and V5+ to Chironomus plumosus larvae and tubifex tubifex worms. Biologia 53: 315-319. Finney DJ. 1978. Statistical method in biological assay. 3rd ed. London: Cambridge University Press. pp 508. Fisher SW, Chordas III SW, Landrum PF. 1999. Lethal and sublethal body residues for PCB intoxication in the oligochaete, Lumbriculus varigatus. Aquat Toxicol 45:115-126. Forrester GE, Fredericks BI, Gerdeman D, Evans B, Steele MA, Zayed K, Schweitzer LE, Suffet IH, Vance RR, Ambrose RF. 2003. Growth of estuarine fish is associated with the combined concentration of sediment contaminants and shows no adaptation or acclimation to past conditions. Mar Environ Res 56: 423-442 Francesconi KA, Edmonds JS. 1994. Biotransformation of arsenic in the marine environment. In Nriagu JO, ed. Arsenic in the environment. Part 1: Cycling and characterization. New York: Wiley. pp 211-261. Francesconi KA, Kuehnelt D. 2002. Arsenic compounds in the environment. In: William T, Frankenberger Jr, eds. Environmental chemistry of arsenic. New York: Marcel Dekker. pp 51-94. Gaither LA, Eide DJ. 2001. Eukaryotic zinc transporters and their regulation. Biometals 14:251-270. Galvez F, Webb N, Hogstrand C, Wood CM. 1998. Zinc binding to the gills of rainbow trout: the effect of long-term exposure to sublethal zinc. J Fish Biol 52:1089-1104. Giusti L, Zhang H. 2002. Heavy metals and arsenic in sediments, mussels and marine water from Murano (Venice, Italy). Environ Geochem Health 24: 47-65. Gomat A. 1997. Dose-dependent effects of cadmium on the growth of snails in toxicity bioassays. Arch Environ Contam Toxicol 33:209-216. Hall LW Jr, Burton DT. 1982. Effect of power plant coal pile and coal waste runoff and leachate on aquatic biota: an overview with research recommendations. Boca Raton, FL: CRC Press. pp 287-297. Health AG. 1995. Water pollution and fish physiology. 2nd ed. New York: Lewis Publishers. Heinrich-Hirsch B, Madle S, Oberemm A, Gundert-Remy U. 2001. The use of t oxicodynamics in risk assessment. Toxicol Lett 120:131-141. Hill AV. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Pro Physiol Soc 40:4-7. Hogstrand C, Reid S, Wood CM. 1995. Ca2+ versus Zn2+ transport in the gills of freshwater rainbow trout and the cost of adaptation to waterborne Zn2+. J Exp Biol 198:337-348. Hughes MF. 2002. Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1-16. Hwang PP, Tsai YN. 1993. Effects of arsenic on osmoregulation in the tilapia Oreochromis mossambicus reared in seawater. Mar Biol 117:551-558. Hwang H, Fisher SW, Kim K, Landrum PF, Larson RJ, Versteeg DJ. 2003. Assessing the toxicity of dodecylbenzene sulfonate to the midge Chironomus riparius using body residue as the dose metric. Environ Toxicol Chem 22:302-312. Janssen, CR, De Schamphelaere K, Heijerick D, Muyssen B, Lock K, Bossuyt B, Vangheluwe M, Van Sprang P. 2000. Uncertainties in the environmental risk assessment of metals. Hum Ecol RiskAssess:1003-1018. Jager T, Crommentuijn T, Van Gestel CAM, Kooijman SALM. 2004. Simultaneous modeling of multiple end points in life-cycle toxicity tests. Environ Sci Technol 38: 2894-2900. Johnson W, Finely MT. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. US Fish Wildlife Services Resource Publishing 137:1-98. Kammenga JE, Busschers M, Van Straalen NM, Jepson PC, Bakker J. 1996. Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct Ecol 10:106-111. Koch I, Reimer KJ, Beach A, Cullen WR, Gosden A, Lai VWM. 2001. Arsenic speciation in fresh-water fish and bivalves. In: Chappell WR, Abernathy CO, Calderon RL, eds. Arsenic exposure and health effects IV. UK: Elsevier. pp 115-123. Kooijman SALM, Bedaux JJM. 1996. The analysis of aquatic toxicity data. VU University press, Amsterdam, The Netherlands. Kureishy TW, D’silva C. 1993. Uptake and loss of mercury, cadmium and lead in marine organisms. Ind J Exp Biol 31:373-379. Lalonde RL. 1992. Pharmacodynamics. In: Evans WE, Schentag JJ, Jusko WJ, eds. Applied pharmacokinetics. New York: Lippincott Williams and Wilkins. pp 4-1–4-33. Landis WG, Yu MH. 1999. Introduction to environmental toxicology: impacts of chemicals upon ecological systems. Florida: Levis Publishers. Landrum PF, Steevens JA, McElroy M, Gossiaux DC, Lewis JS, Robinson SD. 2005. Time-dependent toxicity of dichlorodiphenyldichloroethylene to Hyalella azteca. Environ Toxicol Chem 24: 211-218. Lee JH, Peter FL, Koh CH. 2002a. Toxicokinetics and time-dependent PAH toxicity in amphiod Hyalella azteca . Environ Sci Technol 36:3124-3130. Lee JH, Peter FL, Koh CH. 2002b. Prediction of time-dependent PAH toxicity in Hyalella azteca using a damage assessment model. Environ Sci Technol 36: 3131-3138. Legierse KCHM, Verhaar HJM, de Bruijn JHM, Herman JLM. 1999. Analysis of the time-dependent acute aquatic toxicity of organophosphorus pesticides: the critical target occupation model. Environ Sci Technol 33:917-925. Leslie HA, Kraak MHS, Hermens JLM. 2004. Chronic toxicity and body residues of the nonpolar narcotic 1,2,3,4-tetrachlorobenzene in Chironomus riparius. Environ Toxicol Chem 23:2022-2028. Liang Y, Cheung RYH, Wong H. 1999. Reclamation of wastewater for polyculture of freshwaterfish: Bioaccumulation of trace metals in fish. Water Res 33:2690-2700. Liao CM, Lin MC. 2001. Acute toxicity modeling of rainbow trout and silver sea bream exposed to waterborne metals. Environ Toxicol 16:349-360. Liao CM, Chen BC, Lin MC, Chiu HM, Chou YH. 2002. Coupling toxicokinetics and pharmacodynamics for predicting survival of abalone (Haliotis diversicolor supertexta) exposed to waterborne zinc. Environ Toxicol 17:478-486. Liao CM, Chen BC, Singh S, Lin MC, Liu CW, Han BC. 2003. Acute toxicity and bioaccumulation of arsenic in tilapia (Oreochromis mossambicus) from a blackfoot disease area in Taiwan. Environ Toxicol 18:252-259. Liao CM, Tsai JW, Ling MP, Liang HM, Chou YH, Yang PT. 2004. Organ-specific toxicokinetics and dose-response of arsenic in tilapia Oreochromis mossambicus. Arch Environ Contam and Toxicol 47:502-510. Liao CM, Liang HM, Chen BC, Singh S, Tsai JW, Chou YH, Lin WT. 2005. Dynamical coupling of PBPK/PD and AUC-based toxicity models for arsenic in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. Environ Pollut 135:221-233. Lien GJ, McKim JM, Hoffman AD, Jenson CT. 2001. A physiologically based toxicokinetic model for lake trout. Aquat Toxicol 51:335-350. Lotufo GR. 1998. Lethal and sublethal toxicity of sediment-associated fluoranthene to benthic copepods: application of the critical-body-residue approach. Aquat Toxicol 44:17-30. Mackay D, Fraser A. 2000. Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110: 375-391. Maher W, Goessler W, Kirby J, Raber G. 1999. Arsenic concentrations and speciation in the tissue and blood of sea mullet (Mugil cephalus) from Lake Macquarie NSW, Australia. Mar Chem 68: 169-82. Makarieva AM, Gorshkov CG, Li BL. 2004. Ontogenetic growth: models and theory. Ecol Model 176:15-26. Mason RP, Laporte JM, Andres S. 2000. Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch Environ Contam Toxicol 38:283-297. McCarty LS. 1986. The relationship between aquatic toxicity QSARS and bioaccumulation for some organic chemicals. Environ Toxicol Chem 5:1071-1080. McCarty LS, Mackay D. 1993. Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27: 1719-1728. McDonald D, Reader J, Dalziel T. 1989. The combined effects of pH and trace metals on fish ionoregulation. In Morris R, Taylor EW, Brown DJA, Brown JA, eds, Acid Toxicity and Aquatic Animals. Cambridge, UK: Cambridge University Press. pp 221-242. McGeachy, SM, Dixon, DG. 1990. Effect of temperature on the chronic toxicity of arsenate to rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 47: 2228–2234. McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A. 2003. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017-037. McSheehy S, Szpunar J, Morabito R, Quevauviller P. 2003. The speciation of arsenic in biological tissues and the certification of reference materials for quality control. Trends Anal Chem 22:191-209. Moore JM, Ramamoorthy S. 1984. Heavy metals in natural waters. New York: Springer Verlag. Muyssen BTA, Janssen CR. 2005. Importance of acclimation to environmentally relevant zinc concentrations on the sensitivity of Daphnia Magna toward zinc. Environ Toxicol Chem 24:895-901. Muyssen BTA, Janssen CR. 2001. Multigeneration zinc acclimation and tolerance in Daphnia magna: Implications for water-quality guidelines and ecological risk assessment. Environ Toxicol Chem 20:2053-2060. Neff JM. 1997. Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16:917-927. Nestorov I. 2003. Whole body pharmacokinetic models. Clin Pharnacokinet 42:883-908. Nichols JW, McKim JM, Andersen ME, Gargas ML, Clewell III HJ, Ericson RJ. 1990. A physiologically based toxicokinetic model for the uptake and absorption of waterborne organic chemicals in fish. Toxicol Appl Pharmacol 106:433-447. Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL. 1991. Physiologically based toxicokinetic modeling of three waterborne chloroethanes in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 110:374-389. Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL, Elonen CM. 1996. A physiologically based toxicokinetic model for dermal absorption of organic chemicals by fish. Fundam Appl Toxicol 31:229-242. Nichols JW, Jensen KM, Tietge JE, Johnson RD. 1998. Physiologically based toxicokinetic model for maternal transfer of 2,3,7,8-tetrachlorodibenzo-p-dioxin in brook trout (Salvelinus fontinalis). Environ Toxicol Chem 17: 2422-2434. Niff JM. 1997. Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16: 917-927. Nriagu JO. 2002. Arsenic in Environment. In: Frankenberger Jr WT (Ed.): Environmental chemistry of arsenic. New York: Dekker. pp. 1-26. Nisbet RM, Muller EB, Lika K, Kooijman SALM. 2000. From molecules to ecosystem through dynamic energy budget models. J Anim Ecol 69:913-926. Niyogi S, Wood CM. 2004. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38: 6177-6192. Oladimeji, AA, Quadri, SU, deFreitas, ASW. 1984. Longterm effects of arsenic accumulation in rainbow trout, Salmo gairdneri. Bull Environ Contam Toxicol 32: 732-741. Oremland RS, Stolz JF. 2003. The ecology of arsenic. Science 300: 939-944. Pane EF, Smith C, McGeer JC, Wood CM. 2003. Mechanisms of acute and chronic waterborne nickel toxicity in the freshwater cladoceran, Daphnia magna. Environ Sci Technol 37:4382-4389. Pawlisz AV, Peter RH. 1993. A radioactive tracer technique for the study of lethal body burdens of narcotic organic chemicals in Daphnia magna. Environ Sci Technol 27:2795-2800. Pedlar RM, Klaverkamp JF. 2002. Accumulation and distribution of dietary arsenic in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 57:153-166. Pedlar RM, Ptashynski MD, Evans R, Klaverkamp JF. 2002. Toxicological effects of dietary arsenic exposure in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 57:167-189. Pelgrom SMGJ, Lock RAC, Balm PHM, Wendelaar Bonga SE. 1995. Integrated physiological response of tilapia, Oreochromis mossambicus, to sublethal copper exposure. Aquat Toxicol 32:303-320. Pelgrom SMGJ, Lock RAC, Balm PHM Bonga SEW. 1997. Calcium fluxes in juvenile tilapia, Oreochromis mossambicus, exposed to sublethal waterborne Cd, Cu or mixtures of these metals. Environ Toxicol Chem 16:770-774. Pery ARR, Ducrot V, Mons R, Garric J. 2003. Modelling toxicity and mode of action of chemicals to analyse growth and emergence tests with the midge Chironomus riparius. Aquat Toxicol 65:281-292. Pery ARR, Flammarion P, Vollat B, Bedaux, JJM, Kooijman SALM, Garric, J. 2002. Using a biology-based model (DEBtox) to analyze bioassays in ecotoxicology: opportunities and recommendations. Environ Toxicol Chem 21:459-465. Peterson RH, Bourbonniere RA, Lacroix GL, Martinrobichaud, Takats P, Brun G. 1989. Responses of atlantic salmon (salmo-salar) alevins to dissolved organic-carbon and dissolved aluminum at low pH. Water Air Soil Pollut 46:399-413. Phillips DJH. 1990. Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquat Tox 16:151-186. Rand G, Well P, McCarty LS. 1995. In: Rand G, ed. Fundamentals of aquatic toxicology. Washington, DC: Taylor & Francis. pp 3-67. Rankin, MG, Dixon, DG. 1994. Acute and chronic toxicity of waterborne arsenite to rainbow trout (Oncorhynchus mykiss). Can J Fish. Aquat Sci 51: 372-380. Redeker ES, Blust R. 2004. Accumulation and toxicity of cadmium in the aquatic oligochaete Tubifex tubifex: a kinetic modeling approach. Environ Sci Technol 38: 537-543. Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang WX. 1998. Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach. Sci Tot Environ 219:117-135. Rice TM, Oris JT, Taylor DH. 2001. Toxicokinetics, available source, and route of entry of lead in fed and food-deprived bullfrog (Rana catesbeiana) larvae. Arch Environ Contam Toxicol 41:450-457. Ricklefs RE. 2003. Is rate of ontogenetic growth constrained by resource supply or tissue growth potential? A comment on West et al.’s model. Funct Ecol 17:384-393. Robert CS, Di Toro DM, Paquin PR, Allen HE, Meyer JS. 2001. Biotic ligand model of the acute toxicity of metals. 2. application to acute copper toxicity in freshwater fish and daphnia. Environ Toxicol Chem 20: 2397-2402. Schuler LJ, Landrum PF, Lydy MJ. 2004. Time-dependent toxicity of fluoranthene to freshwater invertebrates and the role of biotransformation on lethal body residues. Environ Sci Technol 38: 6247-6255. Schultz IR, Barron MG, Newman MC, Vick AM. 1999. Blood flow distribution and tissue allometry in channel catfish. J Fish Biol 54:1275-1286. Scott N, Hatlelid KM, MacKenzie NE, Carter DE. 1993. Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6:102-106. Selye H. 1973. The evolution of the stress concept. Am Sci 61:692-699. Sherwood GD, Rasmussen JB, Rowan DJ, Brodeur J, Hontela A. 2000. Bioenergetic costs of heavy metal exposure in yellow perch (Perca flavescens): in situ estimates with a radiotracer (137Cs) technique. Can J Fish Aquat Sci 57:441-450. Shiomi K. 1994. Arsenic in marine organisms: chemical forms and toxicology aspects. In: Nriagu, JO (Ed.), Arsenic in Environment. Part II: Human Health and Ecosystem Effect. New York: John Wiley & Sons. pp. 261-282. Singh S. 2001. A physiologically based pharmacokinetic and pharmacodynamic model for arsenic accumulation in aquacultural fish from blackfoot disease area in Taiwan. Unpublished PhD dissertation. National Taiwan University. Smedley PL, Kinniburgh DG. 2002. A review of the source, behavior and distribution of arsenic in nature waters. Appl Geochem 17:517-568. Sorenson EMB. 1991. Metal poisoning in fish. Boston, MA: CRC Press. Sparks T. 2000. Statistics in ecotoxicology. New York: Wiley. 320 p. Spehar RL, Fiandt JT, Anderson RL, Defoe DL. 1980. Comparative toxicity of arsenic compounds and their accumulation in invertebrates and fish. Arch Environ Contam Toxicol 9:53-63. Spry DJ, Wood CM. 1985. Ion flux rates, acid-base status, and blood gases in rainbow trout, Salmo gairdneri, exposed to toxic zinc in natural soft water. Can. J Fish Aquat Sci 42:332-1341. Suhendrayatna, Ohki A, Nakajima T, Maeda S. 2001. Metabolism and organ distribution of arsenic in the freshwater fish Tilapia mossambica. Appl Organometal Chem 15:566-571. Suhendrayatna, Ohki A, Nakajima T, Maeda S. 2002. Studies on the accumulation and transformation of arsenic in fresh organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica. Chemosphere 46: 325-331. Suner MA, Devesa V, Munoz O, Lopez F, Montoro R, Arias AM, Blasco J. 1999. Total and inorganic arsenic in the fauna of the Guadalquivir estuary: environmental and human health implications. Sci Total Environ 242:261-270. Tisler T, Zagorc-Koncan J. 2002. Acute and chronic toxicity of arsenic to some aquatic organisms. Bull Environ Contam Toxicol 69:421-429. Thomann RV, Shkreli F, Harrison S. 1997. A pharmacokinetic model of cadium in rainbow trout. Environ Toxicol Chem 16:2268-2274. Uchida K, Kajimura S, Riley LG, Hirano T, Aida K, Grau EG.. 2003. Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol A 134:429-439. US EPA. 2000. Technical progress report of the implementation plan for probabilistic ecological assessments: aquatic systems. Meeting scheduled for April 6 – 7, US Environmental Protection Agency, Washington, DC. US EPA. 2002. National recommended water quality criteria: 2002. EPA-822-R-02-047. Website: http://www.epa.gov/ost/pc/revcom.pdf. Venitz J. 1995. Pharmacokinetic-pharmacodynamic modeling of reversible drug effects. In: Derendorf H, Hochhaus G, eds. Handbook of pharmacokinetic/pharmacodynamic correlation. Roca Raton, FL: CRC Press pp 1-34. Verhaar HJM, de Wolf W, Dyer S, Legierse KCHM, Seinen W, Herman JLM. 1999. An LC50 vs time model for the aquatic toxicity of reactive and receptor-mediated compounds. Consequences for bioconcentration kinetics and risk assessment. Environ Sci Technol 33:758-763. Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijnenburg WJGM. 2004. Internal metal sequestration and its ecotoxicological relevance: A review. Environ Sci Technol 38:4705-4712. Wedemeyer GA, McLeay DJ, Goodyear CP. 1984. Assessing the tolerance of fish and fish populations to environmental stress: the problems and methods of monitoring. In: Cairns VW, Hodson PV, Nriagu JO (eds). Contaminant effects on fisheries. New York: John Wiley & Sons. pp 163-278. Weiss JN. 1997. The Hill equation revisited: uses and misuses. FASEB J 11:835-841. West GB, Brown JH, Enquist BJ. 2001. A general model for ontogenetic growth. Nature 413:628-631. West GB, Brown JH. 2004. Life’s universal scaling laws. Physics Today 57: 36-42. West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:122-126. Widianarko B, van Straalen N. 1996. Toxicokinetics-based survival analysis in bioassays using nonpersistent chemicals. Environ Toxicol Chem 15:402-406. Yu Q, Chaisuksant Y, Connell D. 1999. A model for non-specific toxicity with aquatic organisms over relatively long periods of exposure time. Chemosphere 38:909-918. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38543 | - |
dc.description.abstract | 本論文提出以生理學及生物能量學為基礎之研究架構探討砷在吳郭魚 (Oreochromis mossambicus)之內部影響濃度(internal effect concentration, IEC)所產生之急性與慢性毒之關係,本研究以毒理動力及動態模擬探討吳郭魚對砷之暴露、累積、作用模態(mode of action, MOA)與所引起毒性之關係。本研究之7天生物累積試驗結果顯示吳郭魚主要器官之生物濃縮因子(bioconcentration factor, BCF)皆大於1 (1.04~3.05),代表該魚種暴露於含砷水域時具有累積砷之潛力。砷對吳郭魚之急性毒以不同暴露時間下外部半數致死濃度(external median lethal concentration, LC50)表示,本研究結果顯示96小時LC50及LC50起始值分別為 28.68 (95% CI: 24.92 ~ 32.44) 及12.04 µg mL-1。 本研究以關鍵體內濃度(critical body residue, CBR)、關鍵濃度曲線面積(critical area under the curve, CAUC)及損害評估模式(damage assessment model, DAM)等三種以毒理機制為基礎的急性毒模式對吳郭魚暴露於砷之急性毒資料,包括LC50及內部半數致死濃度 (internal median lethal concentration, CL,50)之描述及預測能力進行評估,進而依據模式理論推論砷對吳郭魚之毒性作用模態。研究結果顯示砷對吳郭魚之急性毒作用方式可以DAM模式描述如下:當砷進入魚體後與標的器官內之受體進行可逆之結合,當體內累積損害超過門檻值時將導致生理機能失衡進而導致個體之死亡;而吳郭魚對砷毒性之調節可經由受損組織之修復及吸收與排除速率之調節來進行。因此,本研究建議採用DAM模式進行砷對水域生態系之影響評估。 本研究以生理學為基礎之毒理動力(physiologically based toxicokinetic, PBTK) 模式探討砷在各器官之生物累積機制,其後並利用此模式預測在不同暴露濃度下砷在吳郭魚體內之毒理動力行為。本研究並以IEC為基礎之希爾方程模式(Hill equation model)結合DAM模式建立以標的器官濃度為基礎之劑量-反應關係,並進而依此預測死亡率與暴露時間之關係。研究結果顯示,吳郭魚之鰓對砷毒性較 為敏感性可有效作為評估砷毒性之替代器官。 本研究並提出以生物能量學為基礎之架構探討慢性暴露狀態下砷對吳郭魚的成長抑制及作用模態。我們以28天的成長暴露試驗進行水體砷濃度與成長抑制程度關係之量化分析。本研究結合以生物能量學為基礎之個體成長模式及動態能量支出模式(dynamic energy budgets, DEB)探討砷之慢性成長毒性。本研究結果顯示吳郭魚之比生長速率(specific growth rate, SGR)與水體砷濃度成反比,我們的成長試驗結果顯示各暴露濃度下所量測到之SGR值分別為0 µg mL-1時為0.76 % d-1、1 µg mL-1為 0.54 % d-1、2 µg mL-1為0.26 % d-1 及 4 µg mL-1為0.017 % d-1。根據DEB理論,本研究指出在食物來源充足之狀態下,砷對吳郭魚成長抑制之作用模態導因於攝食率降低而導致成長率的下降。因此,本研究所建立之以生物能量學及毒性作用模態為基礎之成長模式可以描繪不同暴露條件下吳郭魚從出生至成熟之成長曲線,研究結果顯示在無污染的狀況下吳郭魚之最大成熟體重為1100.82 g,而當魚體暴露於1 µg mL-1、2 µg mL-1及4 µg mL-1時其所相對應之值分別為924.00 g、421.51 g 及352.13 g。 本論文所建構之以生理學、生物能量學及IEC為基礎之評估架構可成功描述不同暴露條件下砷在吳郭魚體內之毒理動力、毒理動態及毒性作用模態。因此,在生態毒理學的研究過程中加入這些因子的考量不僅將促進我們對化學物質毒性的了解,同時亦有助於我們建立更正確的評估模式以減低生態風險評估過程造成疏失的機會,未來並可應用於環境品質規範的制定以保護日益惡化的養殖生態系統。 | zh_TW |
dc.description.abstract | This dissertation proposes a physiologically and bioenergetics based algorithm to relate acute and chronic metal toxicities to the internal effect concentration (IEC) of arsenic (As) in tilapia Oreochromis mossambicus. The relationships among As exposure, uptake, accumulation, and toxicity to tilapia are investigated using toxicokinetic (TK) and toxicodynamic (TD) modeling. A 7-d exposure bioassay reveals that the organ-specific bioconcentration factor (BCF) values of tilapia are all above 1 (1.04 – 3.05), indicating that the tilapia is capable of accumulating waterborne As. The As acute toxicity is analyzed by determining the median external effect concentration (LC50) at different integration times, indicating that 96-h LC50 and LC50(∞) for tilapia are 28.68 (95% CI: 24.92-32.44) and 12.04 µg mL-1, respectively. To determine the mode of action (MOA) governing the As acute toxicity, this study assesses the proposed mechanistics base acute toxicity models, including the critical body residue (CBR) model, the critical area under the curve (CAUC) model, and the recently proposed damage assessment model (DAM). This study test the 3 toxicity models with observed data of tilapia exposed to As, to compare the observed and predicted LC50 and median internal effect concentration (CL,50). Result suggests that the DAM characterizes As acute toxicity well and indicates that the intrinsic MOA of As toxicity might act through the reversible reaction between As and specific receptors in target sites. A physiologically based toxicokinetic (PBTK) model is constructed to elucidate the major mechanisms, accounting for the organ-specific selected accumulation of As in tilapia and then utilize the model to predict the behavior of As in tilapia under different exposure scenarios. This study links kinetically DAM with IEC-based Hill equation model to derive dose-response relationships between equilibrium organ-specific As burdens and mortality effects. Organ-specific dose-response relationships suggest that the gill can be used as a surrogate to assess the As toxicity due to its higher sensibility to toxic effects. To assess As chronic toxicity to tilapia, a bioenergetics-based approach is presented to analyze effects and the MOA of growth inhibition when tilapia are chronically exposed to waterborne As. A 28-d growth bioassay is conducted to quantitatively determine the relationships between As exposures and the magnitudes of growth inhibition. A bioenergetics-based ontogenetic growth model is incorporated with the DEBtox theory to explore the MOA of As growth toxicity. Result shows that the specific growth rates are inversely proportional to As concentrations and are calculated to be 0.76 % d-1 in 0 µg mL-1, 0.54 % d-1 in 1 µg mL-1, 0.26 % d-1 in 2 µg mL-1, and 0.017 % d-1 in 4 µg mL-1, respectively. This study indicates that decreasing of feeding accounts for the As growth inhibition in the case of feeding ad libitum condition. The bioenergetics-based growth model also illustrates the growth trajectories of tilapia in the entire life cycle, suggesting that the maximum biomass of tilapia are 1100.82 g in uncontaminated water, 924.00 g in 1 µg mL-1, 421.51 g in 2 µg mL-1, and 352.13 g in 4 µg mL-1, respectively. The study shows that the proposed physiologically and bioenergetics-based assessment framework successfully links As exposure to TK and TD under varied exposure scenarios. This study also suggests that considering MOAs in ecotoxicology not only improves our understanding of the toxicities of chemicals but also is useful in setting up models and avoiding pitfalls in species- and site-specific environmental risk assessment. This study also supports the suggestion that replacing external concentrations by IECs is a first step toward a measurement for chemical toxicity and can be used to improve the construction of future environmental quality criteria programs, aimed at protecting and restoring the rapidly degrading aquacultural ecosystems. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:36:49Z (GMT). No. of bitstreams: 1 ntu-94-D91622004-1.pdf: 1502091 bytes, checksum: e4fd01323774f0544df959f5159797c6 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
ABSTRACT i 中文摘要 iv TABLE OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xii NOMENCLATURE xv CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BACKGROUND AND RESEARCH OBJECTIVES 3 2.1 Background 3 2.2 Research Objectives 8 CHAPTER 3 LITERATURE REVIEW 9 3.1 Arsenic Properties and Toxic Effects in Aquatic Ecosystems 9 3.2 Arsenic Toxicity to Tilapia 14 3.3 Mode of Action of Arsenic Toxicity 18 3.4 Mathematical Models 20 3.4.1 Acute toxicity models 20 3.4.2 Toxicokinetic model 28 3.4.3 Toxicodynamic model 32 3.4.4 DEBtox theory 34 3.4.5 West growth model 39 CHAPTER 4 MATERIALS AND METHODS 42 4.1 Bioassays and Data Analysis 42 4.1.1 Toxicokinetic bioassays 42 4.1.2 Acute toxicity bioassays 46 4.1.3 Chronic toxicity bioassays 47 4.2 Model Development 49 4.2.1 Modeling toxicokinetics 49 4.2.2 Modeling acute toxicity 55 4.2.3 Modeling chronic toxicity 59 CHAPTER 5 RESULTS 63 5.1 Bioaccumulation of Arsenic 63 5.1.1 Bioaccumulation bioassay 63 5.1.2 Organ-specific Arsenic toxicokinetics 67 5.2 Arsenic Acute Toxicity 72 5.2.1 External median lethal concentration (LC50) 72 5.2.2 Median lethal body concentration (CL, 50) 78 5.2.3 Mode of action 87 5.3 Arsenic Chronic Toxicity 90 5.3.1 Specific growth rate of tilapia (SGR) 90 5.3.2 Internal effect concentration (IEC10) 98 5.3.3 Mode of action 101 5.4 Prediction of Arsenic Toxicity 102 5.4.1 Organ-specific does-response relationship 102 5.4.2 Prediction of tilapia growth 108 CHAPTER 6 DISCUSSION 112 6.1 Arsenic Toxicokinetics 112 6.1.1 Organ-specific arsenic toxicokinetics 112 6.1.2 Applications of PBTK model in ecotoxicology 115 6.2 Arsenic Toxicity and Mode of Action 117 6.2.1 Acute toxicity 117 6.2.2 Chronic toxicity 121 6.3 Arsenic Toxicodynamics 125 6.3.1 Applications of Hill equation model in ecotoxicology 125 6.3.2 Applications of bioenergetics in ecotoxicology 127 CHAPTER 7 CONCLUSIONS 131 CHAPTER 8 SUGGESTIONS FOR FUTURE RESEARCH 134 BIBLIOGRAPHY 136 | |
dc.language.iso | en | |
dc.title | 以生物能量及生理為基礎之觀點探討砷毒性對
吳郭魚之毒理動力/動態及作用模態 | zh_TW |
dc.title | Bioenergetics- and Physiologically-Based Toxicokinetics/Toxicodynamics and Mode of Action of Arsenic Toxicity to Tilapia Oreochromis mossambicus | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉振宇,黃鵬鵬,江漢全,廖秀娟,林明炤 | |
dc.subject.keyword | 砷,生物能量,生態毒理學,內部有效濃度,作用模態,吳郭魚,毒理動力,毒理動態, | zh_TW |
dc.subject.keyword | Arsenic,Bioenergetics,Ecotoxicology,Internal effect concentration,Mode of action,Tilapia,Toxicokinetics,Toxicodynamics, | en |
dc.relation.page | 149 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-07 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。