Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊樹文(Su-Win Yang)
dc.contributor.authorChiun-Ming Liaoen
dc.contributor.author廖俊旻zh_TW
dc.date.accessioned2021-06-13T16:36:45Z-
dc.date.available2005-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-06
dc.identifier.citation(1)Mikhail Khovanov, A categorification of the Jones polynomial, arxiv:math.QA/9908171
(2)Mikhail Khovanov, A functor-valued invariant of tangles, arxiv:math.QA/0103190
(3)Dror Bar-Natan, On Khovanov's categorification of the Jones polynomial, arxiv:math.QA/0201043
(4)Eun Soo Lee, The support of the Khovanov's invariants for alternating knots, arxiv:math.GT/0201105
(5)Eun Soo Lee, An endomorphism of the Khovanov invariant, arxiv:math.GT/0210213
(6)LH.Kauffman, State models and the Jones polynomial, Topology, v.26, n.3, 395-407, (1987)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38541-
dc.description.abstractKhovanov發現了一個神祕的環的不變量。大致的想法是造一個chain
complex,使它的尤拉特徵數和它的Jones多項式一樣,然後我們就計算這個chain complex的同調群。這是一個環的不變量,但它每一項所代表的意義尚未被發現。有一些專家們發現了許多它的特性。Dror Bar-Natan的論文裡記載一個特別令人驚奇的性質,它已經被Eun Soo
Lee證明了。這個性質是,對prime alternative的環來說,如果我們將它的同調群畫在方格紙上,那麼它將只出現在兩條平行線上。
在這篇文章裡,我想要找出結的connected sum和disjoint union之間的關係。在Knovanov的文章裡已經有了一個方法,是將兩者做成一個exact sequence,而我的方法就是引用這個。Dror Bar-Natan寫的程式也幫了我很大的忙。
zh_TW
dc.description.abstractA new link invariant found by Khovanov is a mysterious invariant. The brief idea is to build a chain complex for a knot so that its Euler characteristic is its Jones polynomial, and we can compute the Khovanov homology for this chain complex. It is a link invariant, but the meaning of the terms in it is not yet varified. Instead some masters drill out many properties inside this invariant. One amazing property of the Khovanov homology of prime alternative knots is stated in Dror Bar-Natan's paper and is proved by Eun Soo Lee. It says that the Khovanov homology of prime alternative knots appears only in two skew parallel lines if we draw them in a table.
In this article I want to find some relationship between connected sum and disjoint union of two knots. In Knovanov's paper he introduce a nice relation between connected sum and disjoint union of two knots. It is long exact sequences, and my computation is relied on it. The program released by Dror Bar-Natan really does great help to me.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:36:45Z (GMT). No. of bitstreams: 1
ntu-94-R92221013-1.pdf: 348706 bytes, checksum: 669b415a07f22c6cdb18c4c43259f27b (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTitle i
Contents ii
Actknowledgements iii
Abstract in Chinese iv
Abstract v
1. Introduction 1
1.1 The first picture 3
1.2 Backbone 3
1.3 About Cube 4
1.4 The differential 4
1.5 Computing the Cohomology 5
2. The Calculation 6
References 13
dc.language.isoen
dc.titleKhovanov同調群的研究zh_TW
dc.titleSome computations of Khovanov Homologyen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee翁秉仁(Ping-Zen Ong),謝春忠(Chun-Chung Hsieh),王譪農
dc.subject.keyword同調群,zh_TW
dc.subject.keywordKhovanov,homology,knot,en
dc.relation.page13
dc.rights.note有償授權
dc.date.accepted2005-07-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
340.53 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved