Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38536
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振宇(Chen-Wuing Liu)
dc.contributor.authorYou-Ching Chenen
dc.contributor.author陳有慶zh_TW
dc.date.accessioned2021-06-13T16:36:35Z-
dc.date.available2005-07-21
dc.date.copyright2005-07-21
dc.date.issued2005
dc.date.submitted2005-07-06
dc.identifier.citation中央地質調查所(1999 a)台灣地區地下水觀測網第一期計畫-濁水溪沖積扇水文地質調查研究總報告,中央地質調查所。
中央地質調查所(1999 b)九二一地震地質調查報告,中央地質調查所。
中央氣象局網站http://kbteq.ascc.net/archive/cwb/cwb01.html
王安濱、黃振義(1992) 水位異常形態及其與地震關系的初步分析,地震預報與地震工程研究論文集,馮德益主編,地震出版社,pp. 16-21。
台糖公司新營總廠(1996)地下水觀測網之建立及運作管理,經濟部
水資源局。
成功大學防災中心(2001)集集地震發生前後地下水異常變化之研究(1/5),經濟部水利署。
成功大學防災中心(2002)集集地震發生前後地下水異常變化之研究
(2/5),經濟部水利署。
李友平 (2001) 九二一大地震前後濁水溪沖積扇地下含水層應力變化分析,第十二屆水利工程研討會,G137~G144。
李友平 (2002) 濁水溪沖積扇地下水水位之氣壓效應研究,第五屆地下水資源及水質保護研討會,J13~J17。
林允斌、譚義績 (2000) 集集地震前後水井水位之急劇變化,第十一屆水利工程研討會,pp. 199-203。
陳棋炫 (2001) 地層受壓導致有效應力與孔隙水壓變化之耦合分
析,國立台灣大學地質科學研究所碩士論文。
黃明偉 (2000) 以地表位移量推算921地震時車籠埔斷層之錯位參
數,國立中央大學地球物理研究所碩士論文。
黃皇嘉、溫志超(2002)集集地震引起之濁水溪沿岸伏流水變化研究
(二):淺層地下水位變化,第十三屆水利工程研討會,pp. 50-57。
董志秋,徐國錦 (2003) 集集地震引致濁水溪沖積扇水文地質改變之研究,台灣水利,第51卷,第4期,pp. 79-87。
經濟部水利處(2000)九二一大地震後濁水溪沖積扇地表地下水位變動分析報告,經濟部水利處。
經濟部水資源局(1999)台灣地區地下水觀測網整體計畫第一期
(81-87年度)成果彙編,經濟部水資源局。
Bear, J (1972), Dynamics of fluids in porous media. elsevier, New York. pp. 764
Chia, Y. P., Y. S. Wang, H. P. Wu, C. J. Huang, C. W. Liu, M. L. Lin and F. S. Jeng (2000). Changes of groundwater level in response to the 1999 Chi-Chi earthquake, Proceedings of international workshop on Annual Commemoration of Chi-Chi Earthquake, Vol. I, pp. 317-328.
Chia, Y. P., Y. S. Wang, J. J. Chiu, and C. W. Liu (2001). Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan. Bull. Seism. Soc. Am. 91, pp. 1062-1068.
Chia, Y. P., Y. S. Wang, H. P. Wu, C. J. Huang, C. W. Liu, M. L. Lin and F. S. Jeng (2000). Changes of groundwater level in response to the 1999 Chi-Chi earthquake, Proceedings of international workshop on Annual Commemoration of Chi-Chi Earthquake, Vol. I, pp. 317-328.
Chiang, W.H. and W. Kinzelbach (1998). Processing MODFLOW: A
simulation system for modeling groundwater flow and pollution. User's manual. Scientific Software Group. Washington, DC.
Cooper, H.H.,Jr., and C.E. Jacob (1946).A generalized graphical method for evaluation formation constants and summarizing well-field history. Transactions, American Geophysical Union, 27(4) pp. 243-256.
Cooper, H.H., J. D. Bredehoeft, and I. S. Papadopulos (1967). Response to a finite diameter well to an instantaneous change of water. Water Resources Research 3, pp. 263-269.
Fetter, C.W. (1994). Applied Hydrologeology (3rd Ed.). Porentice hall, New Jersey, pp. 243-256.
Freeze, R.A., and J.A. Cherry (1979) Groundwater, Prentice-Hall, Englewood Cliffs, N.J.
Harbaugh, A.W. and M. G. McDonald (1996). Programmer doumentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model, USGS Open-File Report , pp. 96-486.
Ishihara, K (1985) Stability of natural deposit during earthquake, Proc.,11th Int,Conf. On Soil Mechanics and Foundation Engineering. San Francisco ,pp. 321-376.
King, C.Y., S. Azuma, G. Igarashi, M. Ohno, H. Saito, and H. Wakita (1999). Earthquake related water-level changes at 16 closely clustered wells in Tono, Central Japan. J. Geophys. Res. 104, pp. 13073-13082.
Kissin, I. G. and A. O. Grinevsky (1990). Main features of hydrogeodynamic earthquake precursors, Tectonophysics, 178, pp. 277-286.
Liu, L. B., E. A. Roeloffs, and X. Y. Zheng (1989). Seismically induced water level fluctuations in Wali Well, Beijing, China. J. Geophys. Res. 94, pp. 9453-9462.
Lee, M., T.K. Liu, K.F. Ma and Y.M. Chang (2002)Coseismic hydrological changes with dislocation of the September 21, 1999 Chi- Chi earthquake, Taiwan. Geophysical Research Letters, 29(17): 10.1029/2002GL015116.
Montgomery, D. R. and M. Manga (2003). Streamflow and water well
responses to earthquakes, Science.vol 300, pp. 2047-2049.
Ohno, M., H. Wakita, and K. Kanjo (1997). A water well sensitive to seismic waves. Geophy. Res. Lett. 24, pp. 691-694.

Papadopulos, I. S., J. D. Bredehoeft, and H.H. Cooper (1973). On the analysis of “slug test” data. Water Resources Research 9, pp. 1087-1089.
Poeter E. P. and M. C. Hill (1998). Documentation of UCODE, a computer code for universal inverse modeling, U.S. Geological Survey, Water Resources Investigations Report pp. 98-4080.
Quilty, E. G., and E. A. Roeloffs (1997). Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California, Bull. Seism. Soc. Am. 87, pp. 310-317.
Roeloffs, E. A., S. S. Burford, F.S. Riley, and A. W. Records (1989). Hydrologic effects on water level changes associated with episodic fault creep near Parkfield, California. J. Geophys. Res. 94, pp. 12387-12402.
Roeloffs, E. A. (1996) Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Adv. Geophys. 37, pp. 135-195.
Roeloffs, E. A. (1998) Persistent water level changes in a well near Parkfield, California, due to local and distant earthquake. J. Geophys. Res. 103, pp. 869-889.
Shimizu, I., H. Osawa, T. Seo, S. Yasuike, and S. Sasaki (1996). Earthquake-related ground motion and groundwater pressure change at the Kamaishi Mine. Engineering Geology 43, pp. 107-118.
Theis,C.V. (1935) The relation lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage,Trans.Amer. Geophys. Union,16, pp. 519-526.
Terzaghi, K and Peck, R. B. (1967). Soil Mechanics in Engineering Practice, Wiley, New York.
Wakita, H. (1975). Water wells as possible indicators of tectonic strain. Science 189. pp. 553-555.
Wang, C. Y., L. H. Cheng, C. V. Chin, and S. B. Yu (2001). Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geological Society of America 29(9), pp. 831-834.
Wang, C.Y, D.S. Dreger, C.H. Wang, D. Mayeri. and J.G. Berryman (2003).Field relations among coseismic ground motion, water level change and liquefaction for the 1999 Chi-Chi (Mw =7.5) earthquake. Taiwan, Geophys. Res. Lett.,30, 1890, doi:10.1029/2003GL017601.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38536-
dc.description.abstract水力傳導係數是分析水文地質、地下水流及污染傳輸極為重要之參數,集集地震引致地下水位異常變化,亦可能造成土壤結構及水力傳導係數之改變。本研究是將集集地震引致同震地下水位變化視為大自然本身執行之水文試驗,藉由分析水位變化,以期能瞭解集集地震對本區地下水水文地質環境之影響。首先分析將本區劃分為非侷限含水層、侷限含水層與山區之同震水位離震央距離與流通係數之關係,然後探討觀測井同震水位歷線變化與水文地質特性之關係,但均未獲得具體之相關性。再藉由MODFLOW模式模擬地震後地下水位之回復,UCODE模式進行參數優選,探討地震後水力傳導係數及儲水係數之改變或邊界條件之改變。以彰化溪湖、員林及溪州三處土壤液化區之地下水觀測站井進行抽水試驗及微水試驗,分析921地震後該三處站井之流通係數及儲水係數之改變,並與921震前水利署於民國82-83年量測之流通係數及儲水係數比較。
抽水試驗結果顯示流通係數部分除溪湖(二)觀測井減少4.2 %其餘皆為增加,溪州(二)觀測井變化最大增加80.52 %,員林(二)觀測井增加61.02 %;儲水係數部分於溪州(二)觀測井減少83.27 %,而以溪湖(二)觀測井減少60.07 %。本研究經由地震加速度及土壤液化分析求得地震前後土壤孔隙率變化與流通係數變化一致,土壤壓縮係數變化與儲水係數變化一致,顯示地震後員林(二)有土壤液化現象且地震加速度大使土壤孔隙率增加,導致流通係數增加,溪州(二) 地震加速度大使土壤孔隙率增加,導致流通係數增加,而溪州(二)及溪湖(二)之土壤壓縮性減少,導致儲水係數減少。以地震後地面水與地下水水文條件改變進行模式模擬,由模擬與觀測水位歷線擬合結果顯示員林(二)及溪州(二)觀測井模擬結果優於溪湖(二)觀測井。模擬結果顯示集集地震對濁水溪沖積扇水文地質參數影響很小,集集地震主要是增加濁水溪流出水量及東側山區邊界之流出水量。後續研究可考慮地震發生當時應力引致不排水荷重及土壤孔隙率隨時間變化之關係,以改善模擬與觀測結果之擬合。
zh_TW
dc.description.abstractHydraulic conductivity (K) is an important parameter for the investigations of the hydrogeology, groundwater flow and contaminant transport. Soil structures and hydraulic conductivities maybe vary due to the 1999 Chi-Chi earthquake in the Choushui River alluvial fan. In this study, the changes of groundwater level induced by the Chi-Chi earthquake are regarded as the water-level fluctuations of a hydraulic test made by nature. We respect to understand the effect of groundwater hydrogeological properties in Chi-Chi earthquake by analyze the water level changes. First, this study analyzed the relationship of coseismic water-level change versus the distance from epicenter and transmisivity of wells in unconfined aquifers, confined aquifers and mountain region. The recovery of water levels in specified observation wells and hydrogeological properties was analyzed. The analyzed results indicate that the change of coseismic groundwater levels does not correlate well with the distance from epicenter and transmisivity. The numerical model, MODFLOW, was used to simulate the recovery of coseismic water-level changes and the automatically calibrated model, UCODE, was used to determine the changes of K/S on the boundary conditions after the Chi-Chi earthquake. This work performed the in-situ pumping test and the slug test in the liquefaction area of Shi-Hu, Yan-Lin and Shi-Chou monitoring wells after Chi-Chi earthquake occurrence. The transmissivity and storage coefficients were determined and compared with those measured before the Chi-Chi earthquake in 1993-1994.
The results of pumping test show that the transmissivity increases with the highest of 80.52% at the Shi-Chou 2 observation well and increases 61.02% at the Yan-Lin 2 observation well. However, the transmissivity decreases to original one of 4.2% at the Shi- Hu 2 observation well. Furthermore, the storage coefficients decrease with the highest of 83.64% at the Shi-Chou 2 observation well, and decrease 60.07% at the Shi-Hu 2 observation well. The analyzed results of the seismic acceleration and soil liquefaction reveal that the changes of the porosity and soil consolidation coefficients agree with the changes of the transmissivity and storage coefficients, respectively, after the earthquake. At the observation well of Yan-Lin 2 where the soil liquefaction occurred, the soil porosity and the transmissivity increase due to the large seismic acceleration. At the observation well of Shi-Chou 2 where the soil liquefaction does not occur remarkably, the soil porosity and the transmissivity also increase because of the large seismic acceleration. Meanwhile, at the observation wells of Shi-Chou 2 and Shi- Hu 2, the storage coefficients decrease owing to the decreased soil consolidation coefficients. The simulation of the coseismic water-level recovery at the monitoring wells of Yan-Lin and Shi-Chou performs better than that at the monitoring well of Shi-Hu when the simulated conditions of groundwater inflow into rivers and groundwater loss in mountains are imposed on the model. Some factors, such as the transient changes of porosity and undrain loading, do not be considered in this model. A robust model containing these factors should be considered to develop and obtain on improved simulation and observation result.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:36:35Z (GMT). No. of bitstreams: 1
ntu-94-R92622037-1.pdf: 2896210 bytes, checksum: 88a5ba2bb67e0263722c2b397d6c942e (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 ………………………………………………………………I
Abstract ……………………………………………………………… III
目錄 ……………………………………………………………………V
表目錄……………………………………………………………… VIII
圖目錄…………………………………………………………………IX
符號表……………………………………………………………… XIV
第一章 緒論 …………………………………………………………1
1.1 研究動機 …………………………………………………1
1.2 研究目的 …………………………………………………3
1.3 論文架構 …………………………………………………4
第二章 文獻回顧……………………………………………………5
第三章 研究區域及集集地震同震水位變化 …………………9
3.1 濁水溪沖積扇區域概述 …………………………………9
3.2 地下分層及含水層分佈………………………………… 13
3.3 集集地震同震水位變化………………………………… 21
第四章 研究方法及步驟 …………………………………………27
4.1 同震水位變化統計分析………………………………… 29
4.2 含水層試驗……………………………………………… 31
4.2.1 試驗過程及分析方法 ……………………………31
4.2.1.1 微水試驗 ……………………………… 31
4.2.1.2 抽水試驗 ……………………………… 35
4.3 土壤液化………………………………………………… 40
4.3.1土壤液化與地震之關係…………………………… 40
4.3.2地震前後含水層之孔隙率推估…………………… 42
4.4 模式模擬………………………………………………… 43
4.4.1模式概述 …………………………………………… 43
4.4.2邊界條件設定與格網劃分 ………………………… 45
4.4.2.1 邊界條件…………………………………… 45
4.4.2.2 模式分層與格網劃分……………………… 48
4.4.3 輸入參數與資料 ……………………………………50
4.4.4 地震前抽水或補注量推估 …………………………61
4.4.5 地震後探討水文地質參數之改變量 ………………63
第五章 結果與討論 ……………………………………………… 65
5.1 同震水位統計分析結果………………………………… 65
5.1.1同震水位離震央距離與流通係數(T值)之關係…65
5.1.2 觀測井同震水位歷線變化分析…………………… 71
5.2 含水層試驗結果………………………………………… 78
5.2.1 抽水試驗………………………………………… 78
5.2.2 微水試驗 …………………………………………93
5.3 地震前後土壤孔隙率分析結果………………………… 99
5.4模式模擬結果…………………………………………… 106
5.4.1 模式校正………………………………………… 106
5.4.2 模式模擬………………………………………… 109
5.5 討論 …………………………………………………… 130
第六章 結論與建議……………………………………………… 131
6.1 結論 …………………………………………………… 131
6.2 建議 …………………………………………………… 133
參考文獻 ……………………………………………………………135
附錄 現場地下水水文試驗照片及井體構造與岩心記錄資料圖……………………………………………………………… A1
dc.language.isozh-TW
dc.subject參數優選zh_TW
dc.subject同震地下水位zh_TW
dc.subject地下水流模擬zh_TW
dc.subject水力傳導係數zh_TW
dc.subject抽水試驗zh_TW
dc.subjectgroundwater modelen
dc.subjecthydraulic conductivityen
dc.subjectpumping testen
dc.subjectCoseismic water-level changeen
dc.subjectparameter determinesen
dc.title集集地震對濁水溪沖積扇水文地質特性之影響zh_TW
dc.titleEffect of Chi-Chi earthquake on the hydrogeological properties in the Choushi River alluvial fanen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李振誥,賈儀平,徐國錦,陳瑞昇
dc.subject.keyword同震地下水位,地下水流模擬,水力傳導係數,抽水試驗,參數優選,zh_TW
dc.subject.keywordCoseismic water-level change,groundwater model,hydraulic conductivity,pumping test,parameter determines,en
dc.relation.page140
dc.rights.note有償授權
dc.date.accepted2005-07-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved