Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38503
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊永斌
dc.contributor.authorChung-Wei Chenen
dc.contributor.author陳中偉zh_TW
dc.date.accessioned2021-06-13T16:35:33Z-
dc.date.available2006-07-21
dc.date.copyright2005-07-21
dc.date.issued2005
dc.date.submitted2005-07-07
dc.identifier.citationAllman, D. J. (1970), “Triangular finite elements for plate bending, with constant and linearly varying bending moment,” Proc. IUTAM Symposium on High Speed Computing Elastic of Structures, University of Liege, pp. 105-136.
Allman, D. J. (1976), “A simple cubic displacement element for plate bending,” International Journal for Numerical Methods in Engineering, Vol. 10, No. 2, pp. 263-281.
Allman, D. J. (1984), “A compatible triangular element including vertex rotations for plane elasticity analysis,” Computers & Structures, Vol. 19, No. 1-2, pp. 1-8.
Allman, D. J. (1988), “Evaluation of the constant strain triangle with drilling rotations,” International Journal for Numerical Methods in Engineering, Vol. 26, No. 12, pp. 2645-2655.
Ayad, R., Dhatt, G. and Batoz, J. L. (1998), “A new hybrid-mixed variational approach for Reissner- Mindlin plates - the MiSP method,” International Journal for Numerical Methods in Engineering, Vol. 42, No. 7, pp. 1149-1179.
Ayad, R., Rigolot, A. and Talbi, N. (2001), “An improved three-node hybrid-mixed element for Mindlin/Reissner plates,” International Journal for Numerical Methods in Engineering, Vol. 51, No. 8, pp. 919-942.
Batoz, J. L. (1980), “A study of three-node triangular plate bending elements,” International Journal for Numerical Methods in Engineering, Vol. 15, No. 12, pp. 1771-1812.
Batoz, J. L. and Dhatt, G. (1990), Modelisation des Structures par Elements Finis, Editions Hermes, Vol. 2 Pourtres et Plaques.
Batoz, J. L. and Katili, I. (1992), “On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints,” International Journal for Numerical Methods in Engineering, Vol. 35, No. 8, pp. 1603-1632.
Bazeley, G. P., Cheung, Y. K., Irons, B. M. and Zienkiewicz, O. C. (1965), “Triangular elements in plate bending – conforming and non-conforming solutions,” Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 547-576.
Cantin, G., Loubignac, G. and Touzot, G. (1978), “An iterative algorithm to build continuous stress and displacement solutions,” International Journal for Numerical Methods in Engineering, Vol. 12, No. 10, pp. 1493-1506.
Caramanlian, C. (1983), “A solution to the C1 continuity problem in plate bending,” International Journal for Numerical Methods in Engineering, Vol. 19, No. 9, pp. 1291-1317.
Chen, W. and Cheung, Y. K. (2001), “Refined 9-dof triangular Mindlin plate elements,” International Journal for Numerical Methods in Engineering, Vol. 51, No. 11, pp. 1259-1282.
Clough, R. W. and Tocher, J. L. (1966), “Finite element stiffness matrices for analysis of plate bending,” Proc. 1st Conf. Matrix Meth. Struct. Mech., AFFDL-TR-66-80, pp. 515-545.
Cook, R. D. (1982), “Loubignac's iterative method in finite element elastostatics,” International Journal for Numerical Methods in Engineering, Vol. 18, No. 1, pp. 67-75.
Cook, R. D. (1987), “A plane hybrid element with rotational d.o.f. and adjustable stiffness,” International Journal for Numerical Methods in Engineering, Vol. 24, No. 8, pp. 1499-1508.
Cook, R. D., Malkus, D. S., Plesha, M. E. and Witt, R. J. (2002), Concepts and Applications of Finite Element Analysis, Wiley, 4th ed., New York.
Cowper, G. R., Kosko, E., Lindberg, G. M. and Olson, M. D. (1969), “Static and dynamic applications of a high-precision triangular plate bending element,” AIAA Journal, Vol. 7, No. 10, pp. 1957-1965.
Fajman, P. (2002), “New triangular plane element with drilling degrees of freedom,” Journal of Engineering Mechanics, Vol. 128, No. 4, pp. 413-418.
Felippa, C. A. and Bergan, P. G. (1987), “A triangular bending element based on an energy-orthogonal free formulation,” Computer Methods in Applied Mechanics and Engineering, Vol. 61, No. 2, pp. 129-160.
Felippa, C. A. and Alexander, S. (1992), “Membrane triangles with corner drilling freedoms – III. Implementation and performance evolution,” Finite Elements in Analysis and Design, Vol. 12, No. 3-4, pp. 203-239.
Gere, J. M. and Timoshenko, S. P. (1997), Mechanics of Materials, PWS Publishing Company, 4th ed., New York.
Henshell, R. D. (1973), “On hybrid finite elements,” The Mathematics of Finite Elements and Applications (J. R. Whiteman, Ed.), Academic Press, New York, pp. 299-311.
Herrmann, L. R. (1965), “A bending analysis for plates,” Proc. Conf. on Matrix Methods in Structural Mechanics, AFFDL-TR-66-80, pp. 577-604.
Hinton, E. and Campbell, J. S. (1974), “Local and global smoothing of discontinuous finite element functions using a least square method,” International Journal for Numerical Methods in Engineering, Vol. 8, No. 3, pp. 461-480.
Kant, T. and Hinton, E. (1983), “Mindlin plate analysis by segmentation method,” Journal of Engineering Mechanics, Vol. 109, No. 2, pp. 537-556.
Long Yuqiu and Xu Yin (1994), “Generalized conforming triangular membrane element with vertex rigid rotational freedoms,” Finite Elements in Analysis and Design, Vol. 17, No. 4, pp. 259-271.
Loubignac, G., Cantin, G. and Touzot, G. (1977), “Continuous stress fields in finite element analysis,” AIAA Journal, Vol. 15, No. 11, pp. 1645-1647.
Pian, H. H. (1965), “Element stiffness matrices for prescribed boundary stresses,” Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 457-477.
Pian, H. H. and Tong, P. (1969), “Basis of finite element methods for solid continua,” International Journal for Numerical Methods in Engineering, Vol. 1, No. 1, pp. 3-28.
Pian, H. H. (1978), “A historical note about ‘hybrid element’,” International Journal for Numerical Methods in Engineering, Vol. 12, No. 5, pp. 891-892.
Razzaque, A. (1973), “A program for triangular bending elements with derivative smoothing,” International Journal for Numerical Methods in Engineering, Vol. 6, No. 3, pp. 333-343.
Stricklin, J. A., Haisler, W., Tisdale, P. and Gunderson, R. (1969), “A rapid converging triangular plate element,” AIAA Journal, Vol. 7, No. 1, pp. 180-181.
Sze, K. Y., Zhu, D. and Chen, D. P. (1997), “Quadratic triangular plate bending element,” International Journal for Numerical Methods in Engineering, Vol. 40, No. 5, pp. 937-951.
Timoshenko, S. P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, 2nd ed., New York.
Tocher, J. L. and Kapur, K. K. (1965), “Comment on basis for derivation of matrices for the direct stiffness method,” AIAA Journal, Vol. 3, No. 6, pp. 1215-1216.
Tong, P. and Pian, H. H. (1969), “A variational principle and the convergence of a finite-element method based on assumed stress distribution,” International Journal of Solids and Structures, Vol. 5, No. 5, pp. 463-472.
Tong, P. (1970), “New displacement hybrid finite element model for solid continua,” International Journal for Numerical Methods in Engineering, Vol. 2, No. 1, pp. 73-83.
Washizu, K. (1982), Variational Methods in Elasticity and Plasticity, Pergamon Press, 3rd ed., New York.
Yang, Y. B. and Leu, L. J. (1991), “Force recovery procedures in nonlinear analysis,” Computers & Structures, Vol. 41, No. 6, pp. 1255-1261.
Yang, Y. B. and Kuo, S. R. (1994), Theory and Analysis of Nonlinear Framed Structures, Prentice Hall, 1st ed., New York.
Zienkiewicz, O. C., Taylor, R. L., Papadopoulos, P. and Onate, E. (1990), “Plate elements with discrete constraints: new triangular elements,” Computers & Structures, Vol. 35, No. 4, pp. 505-522.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38503-
dc.description.abstract在以有限元素法分析結構問題時,我們是將結構切割成許多元素來表示。每個元素不僅需滿足本身之平衡條件外,亦需符合元素間之諧和性。如此之元素方能準確的計算出結構受外力作用下之變形量。然而在某些情況下,元素只能滿足本身之平衡條件,而邊界之連續性卻因為幾何程度上的複雜而無法完全的維持。這樣的元素導致出近似的勁度矩陣,當使用在結構分析時,僅能得到近似解。而且如果勁度矩陣具有內在缺陷時,單靠細分元素是無法改善此一結果。
為了解決此問題,本文發展了一套迭代流程,可以大幅提升傳統有限元素線性分析的精度,特別適用於元素勁度矩陣具有內在的缺陷的情況。本文之迭代流程可區分成三個主要階段:預測階段主要是由結構之平衡方程式求解位移;校正階段則由預測階段所求出之位移來求算元素內力;平衡檢測階段則是檢核疊加於節點上之內力和外力之比較,而二者間之差稱為不平衡力。
經前人證明可知預測子只影響迭代的收斂速度,而不是解的精度。校正子卻可完全地決定計算結果的準確度。本文中,傳統求解位移步驟中所使用的勁度矩陣將視為預測子。此步驟中使用的勁度矩陣由於推導上的困難僅為近似。因此求得的位移亦為近似值。本文將使用迭代流程於線性分析上來改善由不良勁度矩陣所得的解之精度。
此迭代之重點在於使用準確之校正子,即準確之內力與位移之關係,用以計算由預測子解出的位移來求得元素內力。元素內力經由良好的校正子求出後,則可疊加與外力荷載比較以求出不平衡力。再將此不平衡力視為外力,代入結構平衡方程式可得出修正位移,元素內力亦可因此而更新。此迭代流程需不斷重覆進行待不平衡力可忽略為止。如此可證明出即使使用很差的勁度矩陣作為預測子,若校正子夠準確的話,則經由迭代出的結果亦是準確的。
本文將此迭代流程應用於平面梁、膜及板等問題之分析作為說明。由數值範例分析中,經由此有效的迭代流程於線性分析可彌補某些具有內在缺陷之元素。
zh_TW
dc.description.abstractWhen solving a structural problem by the finite element method, we first discretize the structure of concern into a number of elements. Each of the elements has to satisfy not only the equilibrium conditions but also interelement compatibilities, so that accurate solutions can be computed for the structure under applied loads. In some cases, an element is derived such that the equilibrium condition is satisfied only within element, whereas the compatibilities along the interelement boundaries are not strictly maintained due to geometric complexities. An element stiffness matrix so derived is approximate, which, when employed in structural analysis, will yield only approximate solutions. If the stiffness matrix is inherently defective, it is not always possible to improve the accuracy of the solution obtained by merely using more elements or finer meshes.
In order to solve this kind of linear problems, an iterative procedure is presented in this study, and the accuracy of the solutions obtained by the finite element method can be improved greatly, especially for the cases with stiffness matrices that are inherently defective. The iterative procedure can be classified into three major phases. The predictor phase refers to solution of the structural displacements from the structural stiffness equations. The corrector phase is concerned with the computation of element forces from the element displacements obtained in the predictor phase. In the equilibrium-checking phase, the element forces summed up for each node of the structure are compared with the applied loads. The differences between the applied loads and internal structural forces are regarded as the unbalanced forces.
It has been demonstrated that the predictor affects only the speed of convergence of iterations, but not the accuracy of solutions. The corrector, however, determines entirely the accuracy of the iterative solutions. In this study, the traditional step of solving the structural displacements from the structural equations will be referred to as the predictor. The stiffness matrix involved in this step is approximate or ill-behaved due to the difficulties encountered in the formulation. Because of this, the structural displacements are also approximate. In this study, an iterative procedure will be employed to improve the accuracy of solutions obtained by approximate or ill-behaved stiffness matrices for the analysis of linear problems.

The key point hinges on the use of an accurate corrector, namely, accurate force-displacement relations, for computing the element forces from the element displacements that are made available by the predictor. Once the element forces are computed using a qualified corrector, they can be summed up and compared with the applied loads for evaluation of the unbalanced forces. By treating the unbalanced forces as applied loads, the original structural equations will be solved for corrected displacements, and the element forces can be updated accordingly. Such a procedure of iteration should be repeated until the unbalanced forces can be neglected. It will be demonstrated that even for very rough stiffness matrices used in the predictor, very accurate solutions can be obtained by the iterative procedure, if the corrector used is accurate enough.
As an illustration, the iterative procedure will be incorporated in the linear analysis for dealing with the plane beam problems, and the membrane and plate problems. From the numerical examples, the effectiveness of the procedure in remedying the inherent defects of some finite elements for linear analysis is fully demonstrated.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:35:33Z (GMT). No. of bitstreams: 1
ntu-94-R92521226-1.pdf: 803167 bytes, checksum: e2de3ef2111dd23205e837fc6ecb2023 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents【Table of Contents】
Acknowledgement (Chinese) / I
Abstract / II
Abstract (Chinese) / IV
Table of Contents / V
List of Tables / VIII
List of Figures / X
[Chapter 1] Introduction / 1
1.1 Motivation and Purpose / 1
1.2 Literature Review / 3
1.3 Layout of Thesis / 6
[Chapter 2] Plane Beam Theory / 9
2.1 Introduction / 9
2.2 Bernoulli-Euler Beam / 11
2.2.1 Assumptions of Classical Beam Theory / 11
2.2.2 The Neutral Axis / 11
2.2.3 Element Coordinate System / 12
2.2.4 General Formulation of the Bernoulli-Euler Beam Finite Element / 13
2.2.5 Sign Convention / 18
2.2.6 Derivation of Element Stiffness Matrices / 19
2.3 Timoshenko Beam / 21
2.3.1 General Formulation of the Timoshenko Beam Finite Element / 22
2.3.2 Derivation of Element Stiffness Matrices / 25
2.4 Linear and Mixed Quadratic/Linear Beam Elements / 29
2.4.1 Linear Beam Element / 29
2.4.2 Mixed Quadratic/Linear Beam Element / 31
2.5 Summary / 32
[Chapter 3] An Iterative Procedure for Solving Plane Beam Problems / 35
3.1 Introduction / 35
3.2 Modified Method for Obtaining the Exact Internal Forces / 36
3.3 Predictor and Corrector / 41
3.4 Iterative Procedure / 43
3.5 Numerical Examples / 45
3.5.1 Example 1: Cantilever Beam under Tip Shear and Moment / 45
3.5.2 Example 2: Simply-Supported Beam Loaded Transverse Loads / 49
3.6 Summary / 52
[Chapter 4] An Iterative Procedure for Solving Triangular Membrane Problems / 55
4.1 Introduction / 55
4.2 General Formulation / 57
4.2.1 The Unknowns / 57
4.2.2 Stain-Displacement Relations / 58
4.2.3 Stress-Strain Relations / 59
4.2.4 Variational Method / 60
4.2.5 Element Stiffness Matrix and Structure Matrix Equation / 61
4.3 Constant-Strain Triangle Element / 64
4.4 Modified Method for Building a Continuous Stress Field / 67
4.4.1 Degree of Continuity / 67
4.4.2 Interpolation / 68
4.4.3 Continuous Stress Field / 68
4.4.4 Internal Forces by the Modified Method / 70
4.5 Iterative Procedure / 72
4.6 Numerical Examples / 73
4.6.1 Example 1: Pure Bending of a Square Plate / 74
4.6.2 Example 2: Cantilever Beam Loaded in Pure Bending / 76
4.6.3 Example 3: Cantilever under a Tip Load / 81
4.6.4 Example 4: Cook's Problem / 89
4.7 Summary / 90
[Chapter 5] An Iterative Procedure for Solving Triangular Plate Problems / 93
5.1 Introduction / 93
5.2 Principle of Minimum Complementary Energy-Equilibrium Model / 95
5.3 Variational Principles for the Bending of Elastic Plates / 103
5.3.1 Hellinger-Reissner Principle / 103
5.3.2 Principle of Minimum Complementary Energy / 105
5.4 Triangular Plate Bending Elements / 105
5.4.1 Stretching and Bending of a Plate / 105
5.4.2 Hybrid Stress Elements / 110
5.5 Modified Method for Building a Continuous Moment Field / 120
5.5.1 Local and Global Smoothing / 120
5.5.2 Continuous Moment Field / 121
5.5.3 Internal Forces by the Modified Method / 122
5.6 Iterative Procedure / 128
5.7 Numerical Examples / 129
5.7.1 Example 1: Simply-Supported and Clamped Square Plates / 129
5.7.2 Example 2: Razzaque’s Skew Plate with Skew Angle / 141
5.7.3 Example 3: Clamped Circular Plates under Uniform Loading / 144
5.8 Summary / 150
[Chapter 6] Concluding Remarks and Future Works / 153
6.1 Concluding Remarks / 153
6.2 Future Works / 155
References / 157
dc.language.isoen
dc.subject三角板元素zh_TW
dc.subject迭代法zh_TW
dc.subject預測子zh_TW
dc.subject校正子zh_TW
dc.subject梁元素zh_TW
dc.subjectiterative procedureen
dc.subjecttriangular plate elementen
dc.subjectbeam elementen
dc.subjectcorrectoren
dc.subjectpredictoren
dc.title以迭代法修正梁及三角形元素之缺陷zh_TW
dc.titleAn Iterative Approach for Improving the Performance of Existing Beam and Triangular Elementsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王寶璽,吳致平,姚忠達
dc.subject.keyword迭代法,預測子,校正子,梁元素,三角板元素,zh_TW
dc.subject.keyworditerative procedure,predictor,corrector,beam element,triangular plate element,en
dc.relation.page176
dc.rights.note有償授權
dc.date.accepted2005-07-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
784.34 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved