請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3849完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡正鼎(Cheng-Ting Chien) | |
| dc.contributor.author | Man-Yu Wang | en |
| dc.contributor.author | 王曼彧 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:37:31Z | - |
| dc.date.available | 2017-03-01 | |
| dc.date.available | 2021-05-13T08:37:31Z | - |
| dc.date.copyright | 2017-03-01 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-12-05 | |
| dc.identifier.citation | 1. Rich MM, Wenner P. Sensing and expressing homeostatic synaptic plasticity. Trends in neurosciences. 2007 Mar;30(3):119-25. PubMed PMID: 17267052.
2. Vitureira N, Goda Y. Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. The Journal of cell biology. 2013 Oct 28;203(2):175-86. PubMed PMID: 24165934. Pubmed Central PMCID: 3812972. 3. Ehlers MD, Heine M, Groc L, Lee MC, Choquet D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron. 2007 May 3;54(3):447-60. PubMed PMID: 17481397. Pubmed Central PMCID: 1993808. 4. Heine M, Groc L, Frischknecht R, Beique JC, Lounis B, Rumbaugh G, et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science. 2008 Apr 11;320(5873):201-5. PubMed PMID: 18403705. Pubmed Central PMCID: 2715948. 5. Jurado S, Goswami D, Zhang Y, Molina AJ, Sudhof TC, Malenka RC. LTP requires a unique postsynaptic SNARE fusion machinery. Neuron. 2013 Feb 6;77(3):542-58. PubMed PMID: 23395379. Pubmed Central PMCID: 3569727. 6. Kennedy MJ, Davison IG, Robinson CG, Ehlers MD. Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell. 2010 Apr 30;141(3):524-35. PubMed PMID: 20434989. Pubmed Central PMCID: 2874581. 7. Bhattacharyya S, Biou V, Xu W, Schluter O, Malenka RC. A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nat Neurosci. 2009 Feb;12(2):172-81. PubMed PMID: 19169250. Pubmed Central PMCID: 2694745. 8. Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron. 2008 Jul 10;59(1):84-97. PubMed PMID: 18614031. Pubmed Central PMCID: 2580055. 9. Featherstone DE, Broadie K. Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity. Brain Res Bull. 2000 Nov 15;53(5):501-11. PubMed PMID: 11165785. Epub 2001/02/13. eng. 10. Gramates LS, Budnik V. Assembly and maturation of the Drosophila larval neuromuscular junction. Int Rev Neurobiol. 1999;43:93-117. PubMed PMID: 10218156. Epub 1999/04/28. eng. 11. DiAntonio A. Glutamate receptors at the Drosophila neuromuscular junction. Int Rev Neurobiol. 2006;75:165-79. PubMed PMID: 17137928. Epub 2006/12/02. eng. 12. DiAntonio A, Petersen SA, Heckmann M, Goodman CS. Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J Neurosci. 1999 Apr 15;19(8):3023-32. PubMed PMID: 10191319. Epub 1999/04/07. eng. 13. Featherstone DE, Rushton E, Rohrbough J, Liebl F, Karr J, Sheng Q, et al. An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J Neurosci. 2005 Mar 23;25(12):3199-208. PubMed PMID: 15788777. Pubmed Central PMCID: 2194804. Epub 2005/03/25. eng. 14. Marrus SB, Portman SL, Allen MJ, Moffat KG, DiAntonio A. Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J Neurosci. 2004 Feb 11;24(6):1406-15. PubMed PMID: 14960613. Epub 2004/02/13. eng. 15. Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron. 1997 Dec;19(6):1237-48. PubMed PMID: 9427247. Epub 1998/01/14. eng. 16. Qin G, Schwarz T, Kittel RJ, Schmid A, Rasse TM, Kappei D, et al. Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J Neurosci. 2005 Mar 23;25(12):3209-18. PubMed PMID: 15788778. Epub 2005/03/25. eng. 17. Schuster CM, Ultsch A, Schloss P, Cox JA, Schmitt B, Betz H. Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science. 1991 Oct 4;254(5028):112-4. PubMed PMID: 1681587. Epub 1991/10/04. eng. 18. Schmid A, Hallermann S, Kittel RJ, Khorramshahi O, Frolich AM, Quentin C, et al. Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nat Neurosci. 2008 Jun;11(6):659-66. PubMed PMID: 18469810. Epub 2008/05/13. eng. 19. Albin SD, Davis GW. Coordinating structural and functional synapse development: postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology. J Neurosci. 2004 Aug 4;24(31):6871-9. PubMed PMID: 15295021. Epub 2004/08/06. eng. 20. Heckscher ES, Fetter RD, Marek KW, Albin SD, Davis GW. NF-kappaB, IkappaB, and IRAK control glutamate receptor density at the Drosophila NMJ. Neuron. 2007 Sep 20;55(6):859-73. PubMed PMID: 17880891. Pubmed Central PMCID: 2701504. 21. Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000 Dec;10(12):524-30. PubMed PMID: 11121744. 22. Sherman MY, Goldberg AL. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron. 2001 Jan;29(1):15-32. PubMed PMID: 11182078. 23. Yi JJ, Ehlers MD. Ubiquitin and protein turnover in synapse function. Neuron. 2005 Sep 1;47(5):629-32. PubMed PMID: 16129392. 24. Cline H. Synaptic plasticity: importance of proteasome-mediated protein turnover. Curr Biol. 2003 Jul 1;13(13):R514-6. PubMed PMID: 12842027. 25. Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron. 2003 Oct 30;40(3):595-607. PubMed PMID: 14642282. Pubmed Central PMCID: 3963808. Epub 2003/12/04. eng. 26. DiAntonio A, Hicke L. Ubiquitin-dependent regulation of the synapse. Annu Rev Neurosci. 2004;27:223-46. PubMed PMID: 15217332. 27. Juo P, Kaplan JM. The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Curr Biol. 2004 Nov 23;14(22):2057-62. PubMed PMID: 15556870. Epub 2004/11/24. eng. 28. Zhao Y, Hegde AN, Martin KC. The ubiquitin proteasome system functions as an inhibitory constraint on synaptic strengthening. Curr Biol. 2003 May 27;13(11):887-98. PubMed PMID: 12781127. 29. Collins CA, Wairkar YP, Johnson SL, DiAntonio A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron. 2006 Jul 6;51(1):57-69. PubMed PMID: 16815332. 30. Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS. Highwire regulates synaptic growth in Drosophila. Neuron. 2000 May;26(2):313-29. PubMed PMID: 10839352. 31. DiAntonio A, Haghighi AP, Portman SL, Lee JD, Amaranto AM, Goodman CS. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature. 2001 Jul 26;412(6845):449-52. PubMed PMID: 11473321. 32. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA. Structural regulation of cullin-RING ubiquitin ligase complexes. Current opinion in structural biology. 2011 Apr;21(2):257-64. PubMed PMID: 21288713. Pubmed Central PMCID: 3151539. 33. Merlet J, Burger J, Gomes JE, Pintard L. Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cellular and molecular life sciences : CMLS. 2009 Jun;66(11-12):1924-38. PubMed PMID: 19194658. 34. Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome biology. 2011;12(4):220. PubMed PMID: 21554755. Pubmed Central PMCID: 3218854. 35. Wu JT, Chan YR, Chien CT. Protection of cullin-RING E3 ligases by CSN-UBP12. Trends Cell Biol. 2006 Jul;16(7):362-9. PubMed PMID: 16762551. 36. Zimmerman ES, Schulman BA, Zheng N. Structural assembly of cullin-RING ubiquitin ligase complexes. Current opinion in structural biology. 2010 Dec;20(6):714-21. PubMed PMID: 20880695. Pubmed Central PMCID: 3070871. 37. Kaiser ML, Romisch K. Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD. PloS one. 2015;10(2):e0117260. PubMed PMID: 25658429. Pubmed Central PMCID: 4319758. 38. Kalies KU, Allan S, Sergeyenko T, Kroger H, Romisch K. The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane. The EMBO journal. 2005 Jul 6;24(13):2284-93. PubMed PMID: 15973433. Pubmed Central PMCID: 1173161. 39. Ng W, Sergeyenko T, Zeng N, Brown JD, Romisch K. Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum. Journal of cell science. 2007 Feb 15;120(Pt 4):682-91. PubMed PMID: 17264153. 40. Azzu V, Brand MD. Degradation of an intramitochondrial protein by the cytosolic proteasome. Journal of cell science. 2010 Feb 15;123(Pt 4):578-85. PubMed PMID: 20103532. Pubmed Central PMCID: 2818195. 41. Puram SV, Kim AH, Park HY, Anckar J, Bonni A. The ubiquitin receptor S5a/Rpn10 links centrosomal proteasomes with dendrite development in the mammalian brain. Cell reports. 2013 Jul 11;4(1):19-30. PubMed PMID: 23831032. Pubmed Central PMCID: 4103748. 42. Pinto MJ, Alves PL, Martins L, Pedro JR, Ryu HR, Jeon NL, et al. The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates. The Journal of cell biology. 2016 Mar 28;212(7):789-801. PubMed PMID: 27022091. Pubmed Central PMCID: 4810304. 43. Gorbea C, Pratt G, Ustrell V, Bell R, Sahasrabudhe S, Hughes RE, et al. A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J Biol Chem. 2010 Oct 8;285(41):31616-33. PubMed PMID: 20682791. Pubmed Central PMCID: 2951235. 44. Bingol B, Schuman EM. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature. 2006 Jun 29;441(7097):1144-8. PubMed PMID: 16810255. 45. Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M. Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell. 2010 Feb 19;140(4):567-78. PubMed PMID: 20178748. 46. Liebl FL, Werner KM, Sheng Q, Karr JE, McCabe BD, Featherstone DE. Genome-wide P-element screen for Drosophila synaptogenesis mutants. Journal of neurobiology. 2006 Mar;66(4):332-47. PubMed PMID: 16408305. Pubmed Central PMCID: 1626350. 47. Beumer KJ, Rohrbough J, Prokop A, Broadie K. A role for PS integrins in morphological growth and synaptic function at the postembryonic neuromuscular junction of Drosophila. Development. 1999 Dec;126(24):5833-46. PubMed PMID: 10572057. Epub 1999/11/26. eng. 48. Torroja L, Packard M, Gorczyca M, White K, Budnik V. The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J Neurosci. 1999 Sep 15;19(18):7793-803. PubMed PMID: 10479682. Epub 1999/09/10. eng. 49. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science. 2006 May 19;312(5776):1051-4. PubMed PMID: 16614170. 50. Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron. 2006 Mar 16;49(6):833-44. PubMed PMID: 16543132. 51. Hing H, Xiao J, Harden N, Lim L, Zipursky SL. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell. 1999 Jun 25;97(7):853-63. PubMed PMID: 10399914. 52. Gatti A, Huang Z, Tuazon PT, Traugh JA. Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J Biol Chem. 1999 Mar 19;274(12):8022-8. PubMed PMID: 10075701. Epub 1999/03/13. eng. 53. Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T, et al. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol. 1997 Mar;17(3):1129-43. PubMed PMID: 9032240. Pubmed Central PMCID: 231838. Epub 1997/03/01. eng. 54. Zenke FT, King CC, Bohl BP, Bokoch GM. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J Biol Chem. 1999 Nov 12;274(46):32565-73. PubMed PMID: 10551809. Epub 1999/11/07. eng. 55. Zhong L, Belote JM. The testis-specific proteasome subunit Prosalpha6T of D. melanogaster is required for individualization and nuclear maturation during spermatogenesis. Development. 2007 Oct;134(19):3517-25. PubMed PMID: 17728345. 56. Asano S, Fukuda Y, Beck F, Aufderheide A, Forster F, Danev R, et al. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science. 2015 Jan 23;347(6220):439-42. PubMed PMID: 25613890. 57. Liu Z, Chen Y, Wang D, Wang S, Zhang YQ. Distinct presynaptic and postsynaptic dismantling processes of Drosophila neuromuscular junctions during metamorphosis. J Neurosci. 2010 Sep 1;30(35):11624-34. PubMed PMID: 20810883. 58. Zhang Y, Guo H, Kwan H, Wang JW, Kosek J, Lu B. PAR-1 kinase phosphorylates Dlg and regulates its postsynaptic targeting at the Drosophila neuromuscular junction. Neuron. 2007 Jan 18;53(2):201-15. PubMed PMID: 17224403. Pubmed Central PMCID: 1855201. 59. Ramachandran P, Barria R, Ashley J, Budnik V. A critical step for postsynaptic F-actin organization: regulation of Baz/Par-3 localization by aPKC and PTEN. Developmental neurobiology. 2009 Aug;69(9):583-602. PubMed PMID: 19472188. Pubmed Central PMCID: 2885019. 60. Djakovic SN, Marquez-Lona EM, Jakawich SK, Wright R, Chu C, Sutton MA, et al. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J Neurosci. 2012 Apr 11;32(15):5126-31. PubMed PMID: 22496558. Pubmed Central PMCID: 3348785. 61. Hsu MT, Guo CL, Liou AY, Chang TY, Ng MC, Florea BI, et al. Stage-Dependent Axon Transport of Proteasomes Contributes to Axon Development. Dev Cell. 2015 Nov 23;35(4):418-31. PubMed PMID: 26609957. 62. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998 Jun 25;393(6687):805-9. PubMed PMID: 9655397. Epub 1998/07/09. eng. 63. Bokoch GM. Biology of the p21-activated kinases. Annual review of biochemistry. 2003;72:743-81. PubMed PMID: 12676796. 64. Szczepanowska J. Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements. Acta biochimica Polonica. 2009;56(2):225-34. PubMed PMID: 19513348. 65. Zhao ZS, Manser E. PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation. The Biochemical journal. 2005 Mar 1;386(Pt 2):201-14. PubMed PMID: 15548136. Pubmed Central PMCID: 1134783. 66. Luo L. Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci. 2000 Dec;1(3):173-80. PubMed PMID: 11257905. Epub 2001/03/22. eng. 67. Tashiro A, Yuste R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci. 2004 Jul;26(3):429-40. PubMed PMID: 15234347. Epub 2004/07/06. eng. 68. Duffney LJ, Wei J, Cheng J, Liu W, Smith KR, Kittler JT, et al. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci. 2013 Oct 2;33(40):15767-78. PubMed PMID: 24089484. Pubmed Central PMCID: 3787498. Epub 2013/10/04. eng. 69. Murata Y, Constantine-Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013 Mar 13;33(11):5040-52. PubMed PMID: 23486974. Pubmed Central PMCID: 3632365. Epub 2013/03/15. eng. 70. Gonzalez-Forero D, Montero F, Garcia-Morales V, Dominguez G, Gomez-Perez L, Garcia-Verdugo JM, et al. Endogenous Rho-kinase signaling maintains synaptic strength by stabilizing the size of the readily releasable pool of synaptic vesicles. J Neurosci. 2012 Jan 4;32(1):68-84. PubMed PMID: 22219271. Epub 2012/01/06. eng. 71. Murakoshi H, Wang H, Yasuda R. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature. 2011 Apr 7;472(7341):100-4. PubMed PMID: 21423166. Pubmed Central PMCID: 3105377. Epub 2011/03/23. eng. 72. Ma QL, Yang F, Frautschy SA, Cole GM. PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. Cell Logist. 2012 Apr 1;2(2):117-25. PubMed PMID: 23162743. Pubmed Central PMCID: 3490962. Epub 2012/11/20. Eng. 73. Salminen A, Suuronen T, Kaarniranta K. ROCK, PAK, and Toll of synapses in Alzheimer's disease. Biochemical and biophysical research communications. 2008 Jul 11;371(4):587-90. PubMed PMID: 18466762. 74. Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, et al. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci. 2006 Feb;9(2):234-42. PubMed PMID: 16415866. 75. Eriguchi M, Mizuta H, Luo S, Kuroda Y, Hara H, Rubinsztein DC. alpha Pix enhances mutant huntingtin aggregation. Journal of the neurological sciences. 2010 Mar 15;290(1-2):80-5. PubMed PMID: 19969308. 76. Luo S, Mizuta H, Rubinsztein DC. p21-activated kinase 1 promotes soluble mutant huntingtin self-interaction and enhances toxicity. Human molecular genetics. 2008 Mar 15;17(6):895-905. PubMed PMID: 18065495. 77. Allen KM, Gleeson JG, Bagrodia S, Partington MW, MacMillan JC, Cerione RA, et al. PAK3 mutation in nonsyndromic X-linked mental retardation. Nature genetics. 1998 Sep;20(1):25-30. PubMed PMID: 9731525. 78. Bienvenu T, des Portes V, McDonell N, Carrie A, Zemni R, Couvert P, et al. Missense mutation in PAK3, R67C, causes X-linked nonspecific mental retardation. American journal of medical genetics. 2000 Aug 14;93(4):294-8. PubMed PMID: 10946356. 79. Boda B, Alberi S, Nikonenko I, Node-Langlois R, Jourdain P, Moosmayer M, et al. The mental retardation protein PAK3 contributes to synapse formation and plasticity in hippocampus. J Neurosci. 2004 Dec 1;24(48):10816-25. PubMed PMID: 15574732. 80. Strutt H, Searle E, Thomas-Macarthur V, Brookfield R, Strutt D. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins. Development. 2013 Apr;140(8):1693-702. PubMed PMID: 23487316. Pubmed Central PMCID: 3621487. 81. Grill B, Bienvenut WV, Brown HM, Ackley BD, Quadroni M, Jin Y. C. elegans RPM-1 regulates axon termination and synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1. Neuron. 2007 Aug 16;55(4):587-601. PubMed PMID: 17698012. Epub 2007/08/19. eng. 82. Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell. 2005 Feb 11;120(3):407-20. PubMed PMID: 15707898. Epub 2005/02/15. eng. 83. Hamilton AM, Oh WC, Vega-Ramirez H, Stein IS, Hell JW, Patrick GN, et al. Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron. 2012 Jun 21;74(6):1023-30. PubMed PMID: 22726833. Pubmed Central PMCID: 3500563. Epub 2012/06/26. eng. 84. Ding M, Chao D, Wang G, Shen K. Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination. Science. 2007 Aug 17;317(5840):947-51. PubMed PMID: 17626846. Epub 2007/07/14. eng. 85. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron. 2006 Aug 3;51(3):283-90. PubMed PMID: 16880123. Epub 2006/08/02. eng. 86. Dreier L, Burbea M, Kaplan JM. LIN-23-mediated degradation of beta-catenin regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Neuron. 2005 Apr 7;46(1):51-64. PubMed PMID: 15820693. Epub 2005/04/12. eng. 87. Hoogenraad CC, Feliu-Mojer MI, Spangler SA, Milstein AD, Dunah AW, Hung AY, et al. Liprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development. Dev Cell. 2007 Apr;12(4):587-602. PubMed PMID: 17419996. Epub 2007/04/11. eng. 88. Kuromi H, Kidokoro Y. Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron. 2000 Jul;27(1):133-43. PubMed PMID: 10939337. Epub 2000/08/12. eng. 89. Fonseca R, Nagerl UV, Bonhoeffer T. Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nat Neurosci. 2006 Apr;9(4):478-80. PubMed PMID: 16531998. Epub 2006/03/15. eng. 90. van Roessel P, Elliott DA, Robinson IM, Prokop A, Brand AH. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell. 2004 Nov 24;119(5):707-18. PubMed PMID: 15550251. Epub 2004/11/20. eng. 91. Schaefer H, Rongo C. KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. Mol Biol Cell. 2006 Mar;17(3):1250-60. PubMed PMID: 16394099. Pubmed Central PMCID: 1382314. Epub 2006/01/06. eng. 92. Patrick GN, Bingol B, Weld HA, Schuman EM. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr Biol. 2003 Dec 2;13(23):2073-81. PubMed PMID: 14653997. Epub 2003/12/05. eng. 93. Sigrist SJ, Thiel PR, Reiff DF, Schuster CM. The postsynaptic glutamate receptor subunit DGluR-IIA mediates long-term plasticity in Drosophila. J Neurosci. 2002 Sep 1;22(17):7362-72. PubMed PMID: 12196557. 94. O'Connor-Giles KM, Ganetzky B. Satellite signaling at synapses. Fly. 2008 Sep-Oct;2(5):259-61. PubMed PMID: 20798607. Pubmed Central PMCID: 3744159. 95. Dickman DK, Lu Z, Meinertzhagen IA, Schwarz TL. Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol. 2006 Mar 21;16(6):591-8. PubMed PMID: 16546084. 96. Ball RW, Warren-Paquin M, Tsurudome K, Liao EH, Elazzouzi F, Cavanagh C, et al. Retrograde BMP signaling controls synaptic growth at the NMJ by regulating trio expression in motor neurons. Neuron. 2010 May 27;66(4):536-49. PubMed PMID: 20510858. 97. Coyle IP, Koh YH, Lee WC, Slind J, Fergestad T, Littleton JT, et al. Nervous wreck, an SH3 adaptor protein that interacts with Wsp, regulates synaptic growth in Drosophila. Neuron. 2004 Feb 19;41(4):521-34. PubMed PMID: 14980202. 98. Rodal AA, Motola-Barnes RN, Littleton JT. Nervous wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth. J Neurosci. 2008 Aug 13;28(33):8316-25. PubMed PMID: 18701694. Pubmed Central PMCID: 2546611. 99. Sato T, Ogata J, Niki Y. BMP and Hh signaling affects primordial germ cell division in Drosophila. Zoological science. 2010 Oct;27(10):804-10. PubMed PMID: 20887178. 100. Rasse TM, Fouquet W, Schmid A, Kittel RJ, Mertel S, Sigrist CB, et al. Glutamate receptor dynamics organizing synapse formation in vivo. Nat Neurosci. 2005 Jul;8(7):898-905. PubMed PMID: 16136672. 101. Harden N, Lee J, Loh HY, Ong YM, Tan I, Leung T, et al. A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures. Mol Cell Biol. 1996 May;16(5):1896-908. PubMed PMID: 8628256. Pubmed Central PMCID: 231177. 102. Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, Engstrom U, et al. The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. FEBS letters. 1998 Aug 28;434(1-2):83-7. PubMed PMID: 9738456. 103. Wang S, Yoo S, Kim HY, Wang M, Zheng C, Parkhouse W, et al. Detection of in situ protein-protein complexes at the Drosophila larval neuromuscular junction using proximity ligation assay. Journal of visualized experiments : JoVE. 2015 Jan 20(95):52139. PubMed PMID: 25650626. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3849 | - |
| dc.description.abstract | 為因應環境與生理變化,神經突觸會調整可塑性並同時維持恆定性,細胞內的蛋白質組須受到嚴密的調控以應對這些挑戰,蛋白質新生成、運輸以及降解摺疊錯誤與受損的蛋白質在在是維持胞內蛋白質組的重要環節。
第一部分中分析了henji(亦稱dbo)之基因突變株於果蠅肌肉神經連結突觸的性狀,在此突變株中,富含突觸的神經小結(boutons)出現異常的型態:許多小型的聚集在分支最末端的小結,稱為衛星狀小結 (satellite boutons)。另一方面,穿透式電子顯微鏡的超微結構分析顯示後突觸緻密(postsynaptic density, PSD)的區域增大,在後突觸緻密中聚集著許多後突觸特有的蛋白質以及谷氨酸受體GluRIIA與GluRIIB,這兩類的谷氨酸受體具有不同的離子通道特性,因此一個後突觸包含的谷氨酸受體組成(亦即GluRIIA與GluRIIB的比例)大大影響了該突觸的電生理反應。在henji突變株中GluRIIA異常的大量累積在突觸處,而GluRIIB並無明顯變化,電生理測量也顯示出突變株的突觸具有較高的GluRIIA/GluRIIB比例。同樣在henji突變株中也發現dPAK這個已知可促進突觸處GluRIIA累積的激酶也增加了,當henji突變株中dpak的基因量減少一半時,GluRIIA的量與衛星小結的數量都恢復正常,另外我們也證明Henji透過其Kelch domain與dPAK產生分子間的作用,並且Kelch domain對於Henji在細胞內的位置以及調控GluRIIA的功能都是不可或缺的,因此我們的結論是Henji在後突觸透過調控dPAK來控制GluRIIA在突觸處的量以及前突觸小結的正常生長。 第二部分中首先分析了蛋白酶體在果蠅神經肌肉連結的分布位置,發現突觸下質網(subsynaptic reticulum, SSR)的區域缺乏蛋白酶體,而肌肉細胞質的其他區域都有蛋白酶體的分布,此缺乏蛋白酶體的「冷區」並非由於SSR的物理屏蔽阻隔而形成的,而是蛋白酶體藉由Ecm29這個連結蛋白固定在SSR區域外面。當再後突觸以RNAi的方式來抑制蛋白酶體的功能時,GluRIIA在突觸處的量快速累積而GluRIIB則無明顯變化,藉此來快速調整GluRIIA在突觸處的量可使整個後突觸得以補償突然的神經元活動變化,確實在短暫抑制神經元活性時,蛋白酶體錯位跑到SSR區域內,並且GluRIIA在突觸處的量急速增加而GluRIIB則沒有變化,我們猜測即時增加GluRIIA的量可以提高對突觸前刺激的反應,或許可以補償神經元活性的降低。在抑制神經元活性的情況下增加胞內cAMP/PKA的活性,可以部分恢復蛋白酶體的錯位,使其重新聚集在SSR外面。由上述實驗結果我們認為蛋白酶體經由Ecm29固定在SSR區域外圍,藉此減少SSR區域內的蛋白質降解、使SSR內成為高度蛋白質聚集的區域,當神經元活性降低時,後突觸細胞內的cAMP/PKA活性下降,使得蛋白酶體與Ecm29的交互作用受到抑制,造成蛋白酶體解體、GluRIIA在突觸處快速累積,因而產生較大的後突觸反應,補償降低的神經元活性。由此假說推測可能在後突觸附近有未知的運輸系統可辨認並將GluRIIA等需經由蛋白酶體降解的物質由SSR內送出,此假設尚需要更多的實驗來證明。 | zh_TW |
| dc.description.abstract | In response to environmental and physiological changes, the synapses manifest plasticity while simultaneously maintain homeostasis. A well-tuned proteome is required to meet these demands which is maintained with sufficient de novo protein synthesis and transport while mis-folded and impaired proteins are removed.
In the first part, we analyzed mutant synapses of henji, also known as dbo, at the Drosophila neuromuscular junctions (NMJs). In henji mutants, NMJ growth is defective with appearance of satellite boutons. Transmission electron microscopy analysis indicates that the synaptic membrane region is expanded. The postsynaptic density (PSD) houses glutamate receptors GluRIIA and GluRIIB, which have distinct channel transmission properties. In henji mutants, GluRIIA abundance is upregulated but that of GluRIIB is not. Electrophysiological results also support a GluR compositional shift towards a higher IIA/IIB ratio at henji NMJs. Strikingly, dPAK, a positive regulator for GluRIIA synaptic localization, accumulates at henji PSDs. Reducing the dpak gene dosage suppresses satellite boutons and GluRIIA accumulation at henji NMJs. In addition, dPAK associated with Henji through the Kelch repeats which is the domain essential for Henji localization and function at postsynapses. We propose that Henji acts at postsynapses to restrict both presynaptic bouton growth and postsynaptic GluRIIA abundance by modulating dPAK. In the second part, we found that the proteasome is absent in the subsynaptic reticulum (SSR) of Drosophila NMJs where synaptic proteins are enriched. This specific “cold zone” is not shaped by structural barrier of the SSR, instead, proteasome is anchored by the adaptor protein Extracellular mutant 29 (Ecm29), whose localization is excluded from the SSR. When the proteasome activity is transiently inhibited by RNAi for essential subunits of the 19S regulatory particle, GluRIIA accumulates while GluRIIB does not. Rapid modulation on GluRIIA synaptic levels enables the postsynapses to respond to changes in synaptic activity. Indeed, when neuronal activity is transiently inhibited, synaptic proteins sensitive to proteasome activity readily accumulated. Activating the cAMP/PKA pathway suppresses this activity withdrawal-triggered GluRIIA accumulation. From above data, we propose a model that the proteasomes are segregated from the SSR by anchoring to Ecm29 to preserve high local concentration of synaptic proteins inside the SSR. When neuronal activity is drastically reduced, the postsynapse responds by reducing the proteasome activity via inhibiting the cAMP/PKA pathway and thus promotes GluRIIA synaptic levels to compensate the drop in activity. An unidentified pathway may be involved in transferring GluRIIA and other proteasome substrates out of the SSR to the proteasome active region for degradation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:37:31Z (GMT). No. of bitstreams: 1 ntu-105-D00448010-1.pdf: 5318716 bytes, checksum: d18ad90f519eb9812eb380c8542aec60 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要……………………….………………………………………………………..2
Abstract…………………………………………………………………………………..4 Chapter 1. General Introduction……………………………………...…………………..6 Chapter 2. Dbo/Henji Modulates Synaptic dPAK to Gate Glutamate Receptor Abundance and Postsynaptic Response……………………………………………………………..12 Chapter 3. Localized proteasome degradation controls synaptic proteostasis at Drosophila neuromuscular junctions………………………………………………………………..25 Chapter 4. Discussion…………………………………………………………………...35 Materials and methods………………………………………………………………….44 References……………………………………………………………………………...50 Figures and tables………………………………………………………………………68 | |
| dc.language.iso | en | |
| dc.subject | 谷氨酸受體 | zh_TW |
| dc.subject | 蛋白?體 | zh_TW |
| dc.subject | GluRIIA | en |
| dc.subject | proteasome | en |
| dc.subject | Henji | en |
| dc.title | Henji與蛋白酶體於果蠅肌肉神經連結調控IIA型谷氨酸受體量的機制探討 | zh_TW |
| dc.title | Regulation of Synaptic Glutamate Receptor IIA abundance by Henji and the Proteasome at Drosophila Neuromuscular Junctions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳瑞華(Ruey-Hwa Chen),姚季光(Chi-Kuang Yao),鄭珮琳(Pei-Lin Cheng),潘俊良(Chun-Liang Pan) | |
| dc.subject.keyword | 蛋白?體,谷氨酸受體, | zh_TW |
| dc.subject.keyword | Henji,proteasome,GluRIIA, | en |
| dc.relation.page | 124 | |
| dc.identifier.doi | 10.6342/NTU201603760 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-12-05 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 5.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
