請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38460完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳少傑(Sao-Jie Chen) | |
| dc.contributor.author | Cheng-Wei Chu | en |
| dc.contributor.author | 朱正偉 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:34:14Z | - |
| dc.date.available | 2005-07-27 | |
| dc.date.copyright | 2005-07-27 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-08 | |
| dc.identifier.citation | [1] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra, “Overview of the H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, July 2003, pp. 560-576.
[2] Arundhati Tamhankar and Kamisetty Ramanohan Rao, “An Overview of H.264/MPEG-4 Part 10,” in Proceedings of the 4th EURASIP Conf. on Video/Image Processing and Multimedia Communications (EC-VIP-MC), July 2003, pp. 1-51. [3] Jorn Ostermann, Jan Bormans, Peter List, Detlev Marpe, Matthias Narroschke, Fernando Pereira, Thomas Stockhammer and Thomas Wedi, “Video coding with H.264/AVC: tools, performance, and complexity,” IEEE Circuits and Systems Magazine, vol. 4, Issue 1, First Quarter 2004, pp. 7-28. [4] Yu-Wen Hunang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee Chen, Fellow, IEEE, “Analysis, Fast Algorithm, and VLSI Architecture Design for H.264/AVC Intra Frame Coder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 3, March 2005, pp. 378-401. [5] Tu-Chih Wang, Yu-Wen Huang, Hung-Chi Fang, and Liang-Gee Chen, “Parallel 4x4 2D Transfrom and Inverse Transform Architecture for MPEG-4 AVC/H.264,” in Proceedings of the 2003 International Symposium on Circuits and Systems (ISCAS 2003), vol. 2, May 2003, pp.II-800-II-803. [6] Roman Kordasiewicz and Shahram Shirani, “Hardware Implementation of the Optimized Transform and Quantization Block of H.264,” in Proceedings of Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, 2004. vol. 2, pp. 943-946. [7] Henrique S. Malvar, Antti Hallapuro, Marta Karczewicz, and Louis Kerofsky, “Low-Complexity Transform and Quantization in H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, No. 7, July 2003, pp. 598 – 603. [8] Ihab Amer, Wael Badawy, and Graham Jullien, “Hardware Prototyping for the H.264 4x4 Transformation,” in Proceddings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, vol. 5, May 2004, pp. V-77-V-80. [9] Ling-Zhi Liu, Lin Qiu, Meng-Tian Rong and Li Jiang, “A 2-D Forward/Inverse Integer Transform Processor of H.264 Based on Highly-Parallel Architecture,” in Proceedings of the 4th International Workshop on System-on-Chip for Real-Time Applications, July 2004, pp.158-161. [10] Sung-Kyu Choi, Jong-Gu Jeon, Woo-Sung Shim, Won-Kap Jang and Victor H.S. Ha, “Design and implementation of H.264-based video decoder for digital multimedia broadcasting,” in Proceedings of IEEE international conf. on Multimedia and Expo, ( ICME '04), vol. 1, June 2004, pp. 149-152. [11] Bing-Yu Hsieh, Parallel Architecture Design of H.264/MPEG-4 AVC Intra Coder for SDTV Applications, Master Thesis, GIEE, NTU, June 2003. [12] Tung-Chien Chen, Design and Implementation of H.264/MPEG-4 AVC Encoder for SDTV/HDTV Application, Master Thesis, GIEE, NTU, June 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38460 | - |
| dc.description.abstract | 此論文提出一個H.264畫面內編碼電路的設計。此設計對編碼影像中的輝度像素可做H.264標準中所提出九種INTRA_4x4及四種INTRA_16x16的預測模式,對於彩度像素也可完成所制定的四種INTRA_CHROMA的預測模式。此設計具有處理SDTV(720 x 480 x 30 fps)應用的畫面內編碼的能力。
本文中我們設計一種可以產生所有H.264規定的預測模式的預測值產生器。H.264標準中轉換及逆轉換的電路則以多重轉換器架構加以實現。另外也設計了數量化、解數量化及模式決定電路來完成完整的編碼工作。在此設計中每一個階段均可在一個時脈同時處理四個像素。一個巨方塊將花費1350個時脈來完成所有預測模式的計算。 利用UMC 0.18微米1P6M的製程完成晶片原型設計並送至系統晶片中心進行實作。此原型設計在佈局後模擬可操作於55.56MHz、其晶片大小為2.374 x 2.434 mm2、邏輯閘數目約為201K。 | zh_TW |
| dc.description.abstract | In this Thesis, we propose a design of H.264 intra frame coding circuit. In the proposed design, nine INTRA_4x4 and four INTRA_16x16 prediction modes for luminance samples are realized, and four INTRA_CHROMA prediction modes for chrominance samples are also implemented. The design owns a processing capability to accomplish the H.264 intra frame coding for SDTV (720 x 480 x 30 fps) application.
The architecture of intra prediction generator is designed to support all prediction modes defined in the H.264 standard. Forward/inverse transform unit proposed in [5] is adopted. Architectures of Quantization, Dequantization and Mode Decision units have also been designed. Every stage in our design can process four pixels per clock. A microblock (MB) with full prediction case will spend 1350 clocks to accomplish all prediction modes. A prototype of the proposed design was implemented in UMC 0.18um 1P6M process technology and fabricated by CIC. The maximum operation frequency of our design in post-layout simulation is 55.56 MHz. This processing capability is sufficient for the requirement in SDTV (720 x 480 x 30 fps) intra frame encoding. The die size is 2.374 x 2.434 mm2, and gate count is about 201k. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:34:14Z (GMT). No. of bitstreams: 1 ntu-94-R92943058-1.pdf: 1966639 bytes, checksum: a348af106e1593a56575a73c51b459d4 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | ABSTRACT iii
LIST OF FIGURES v LIST OF TABLES vii 1. INTRODUCTION 1 1.1 H.264/AVC Standard 1 1.2 Video Structure in H.264 3 1.3 H.264 Intra Coding 4 1.3.1 Directional Spatial Prediction 4 1.3.2 Drift-Free Inverse Transform 5 1.3.3 4x4 Block-Size Transform 5 1.3.4 Hierarchical Block Transform 6 1.3.5 Low Complexity and Short Word-Length Operations 6 1.3.6 Variation of Quantization Step Size 6 1.4 Previous Related Designs 7 1.5 Thesis Organization 8 2. OVERVIEW OF H.264 INTRA CODING 9 2.1 Intra Prediction 9 2.1.1 INTRA_4x4 Prediction Type 9 2.1.2 INTRA_16x16 Prediction Type 11 2.1.3 INTRA_CHROMA Prediction Type 13 2.2 Transform and Quantization 13 2.2.1 DCT-like Integer Transform and Quantization for Residual Data 13 2.2.2 Hierarchical Coding for DC Coefficients 16 2.2.2.1 Hadamard Transform for INTRA_16x16 DC Coefficients 17 2.2.2.2 Hadamard Transform for INTRA_CHROMA DC Coefficients 18 3. ARCHITECTURE DESIGN OF H.264 INTRA CODING 21 3.1 System Design of H.264 Intra Coding 21 3.2 Forward/Inverse Transform 22 3.3 Quantization/Dequantization 25 3.4 Prediction Generator 26 3.5 Mode Decision 35 3.6 Operation Flow for Hierarchical Block Transform 36 4. HARDWARE IMPLEMENTATION 39 4.1 Design and Implementation Flow 39 4.2 Environment Setting for Functional Verification 40 4.3 Simulation Results 41 4.4 Implementation Results 44 5. CONCULSION 49 | |
| dc.language.iso | en | |
| dc.subject | 畫面內編碼器 | zh_TW |
| dc.subject | H.264 | zh_TW |
| dc.subject | Intra-frame Coding | en |
| dc.subject | H.264 | en |
| dc.title | H.264畫面內編碼電路之設計與製作 | zh_TW |
| dc.title | Design and Implementation of an H.264 Intra-frame Coding Circuit | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 任建葳(Chein-Wei Jen),簡韶逸(Shao-Yi Chien) | |
| dc.subject.keyword | H.264,畫面內編碼器, | zh_TW |
| dc.subject.keyword | H.264,Intra-frame Coding, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
