Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38459
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江衍偉
dc.contributor.authorShih-Chieh Weien
dc.contributor.author魏士傑zh_TW
dc.date.accessioned2021-06-13T16:34:12Z-
dc.date.available2007-07-20
dc.date.copyright2005-07-20
dc.date.issued2005
dc.date.submitted2005-07-08
dc.identifier.citation[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062 (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489 (1987).
[3] J. Smajic, “Design and optimization of an achromatic photonic crystal bend,” Opt. Exp., vol. 11, pp. 1378-1384 (2003).
[4] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve and J. D. Joannopoulos, “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic crystal,” Science, vol. 282, pp. 274-276 (1998).
[5] S. Fan, P. R. Villeneuve, J. D. Joannopoulos and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett., vol. 80, pp. 960-963 (1998).
[6] H. Ikuno, Y. Naka, and A. Yata, “Analysis of optical waveguide devices using the FDTD method based on the principles of multidimensional wave digital filters,” Radio Sci., vol. 35, pp. 595-605 (2000).
[7] Y. Naka and H. Ikuno, “Analysis of transmission characteristics of two-dimensional photonic crystal L-shaped optical bend waveguides,” Proceedings of the 2000 International Symposium on Antennas and Propagation (ISPA), 2, Fukuoka, Japan pp. 787-790 (2000).
[8] Y. Naka and H. Ikuno, “Two-dimensional Photonic Crystal L-shaped Bend Waveguide and its Application to Wavelength Multi/Demultiplexer,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 10, pp. 245-256 (2002).
[9] E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, pp. 681 (1946).
[10] P. R. Berman, Ed., Cavity Quantum Electrodynamics, New York: Academic Press, 1994.
[11] E. Yablonovitch, ”Photonic band-gap structures,” J. Opt. Soc. Amer. B, vol. 10, pp. 283-295 (1993).
[12] E. F. Schuvert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science, vol. 265, pp. 943-945 (1994).
[13] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahighspontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett., vol. 62, pp. 131–133 (1993).
[14] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film lightemitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174–2176 (1993).
[15] R. Windisch, C. Rooman, S. Meinschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, T. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured lightemitting diodes,” Appl. Phys. Lett., vol. 79, pp. 2315–2317 (2001).
[16] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365–2367 (1999).
[17] W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol., vol. 17, pp. 2170–2182 (1999).
[18] J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron., vol. 36, pp. 1131–1143 (2000).
[19] H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of Light Extraction From Two-Dimensional Photonic Crystal Slab Structures,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 231-237 (2002).
[20] H. Ichikawa, and T. Babaa, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett., vol. 84, pp. 457-459 (2004).
[21] P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystal: Mode symmetry, tenability, and coupling effieciency,” Phys. Rev. B, vol. 54, pp. 7837-7842 (1996).
[22] R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Accurate theoretical-analysis of photonic band gap material,” Phys. Rev. B, vol. 48, pp. 8434-8437 (1993).
[23] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technology, vol. 19, pp. 1970-1975 (2001).
[24] L. Adamowicz, V. Q. Nguyen, “Electromagnetic field in a slab of photonic crystal by BPM,” Optics and Lasers in Engineering, vol. 35, pp. 67-78 (2001).
[25] D. Felbacq, G. Tayeb, and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A, vol. 11, pp. 2526-2538 (1994).
[26] D. Hermann, Frank M., and Busch K., “Photonic band structure computations,” Opt. Exp., vol. 8, pp. 167-172 (2001).
[27] 林振華 編譯, “電磁場與天線分析-使用時域有線差分法(FDTD),” 全華科技圖書股份有限公司 (1999).
[28] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307 (1966).
[29] J. K. Hwang, H. Y. Ryu, and Y. H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B, vol. 60, pp. 4688-4965 (1999).
[30] J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A, vol. 46, pp. 612-622 (1992).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38459-
dc.description.abstract本論文以模擬方式探討光子晶體平板微共振腔的輻射特性。我們使用時域有限差分法作為數值模擬的工具。主要分析兩種結構,其一為「空氣-光子晶體-空氣」的懸空光子晶體;其二為「空氣-光子晶體-基板」,即光子晶體微共振腔下面有基板的結構,這較接近實際的元件。首先我們探討電偶極源與輻射率的關係。我們把以時域有限差分法求得的輻射率與由電偶極矩及電場內積關係式計算而得的輻射率作一比較。接著探討萃取效率與電偶極源的關係。有了輻射率與萃取效率,便可算出等效萃取率。因此,只要知道輻射率與電偶極源的關係,我們就可以在一個共振腔中放置很多電偶極源。我們在光子晶體平板微共振腔中每一個分割點上都放置一個隨機指向的電偶極源,藉此模擬實際上發光二極體的自發放光情況。總之,本研究應有助於增加發光二極體的輻射效率,並可應用於顯示與照明方面。zh_TW
dc.description.abstractIn this thesis, the radiation characteristics of photonic crystal slab microcavitiyes are numerically investigated. We use the finite-difference time-domain method as a simulation tool. Two structures are analyzed. One is an “air- photonic crystal- air” free-standing photonic crystal slab microcavity, and the other is an “air- photonic crystal- substrate” photonic crystal slab microcavity with substrate, which is similar to a real device. First, we investigate the relation between the radiation rate and the dipole source. We compare the radiation rate calculated by finite-difference time-domain method and that calculated by an analytic formula involving an inner product between the dipole moment and the electric field intensity. Then, we investigate the relation between the extraction efficiency and the dipole source. By multiplying the radiation rate and the extraction efficiency, we can obtain the effective extraction rate. Therefore, as we know the relation between the radiation rate and the dipole source, we can set multiple dipole sources in a microcavity. To simulate the spontaneous emission of a light-emitting diode, a randomly oriented dipole source is launched at each Yee cell of a microcavity. This study is helpful for increasing the radiation efficiency of light-emitting diodes and may be useful to the applications of display and lighting.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:34:12Z (GMT). No. of bitstreams: 1
ntu-94-R92941062-1.pdf: 1406705 bytes, checksum: b2f0fd6de6e1903e2ff5a2c813bafac3 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents

Chapter 1 Introduction 1
1.1 Review of photonic crystals 1
1.2 Photonic crystal microcavities 2
1.3 Photonic crystal enhanced LEDs………………………3
1.4 Organization of the thesis……………………………...4
Chapter 2 Numerical Method 7
2.1 Problem geometry 7
2.2 Finite-difference time-domain method………………7
2.2.1 Introduction…………………………………………..…...7
2.2.2 Three-dimensional FDTD algorithms……………..….…..8
2.3 Definitions of parameters……………………………..12
2.4 Computation domain and excited source…………..…13
2.5 Relation between radiation rate and
dipole source…………………………………………..14

Chapter 3 Simulation Results for a Free-Standing Photonic Crystal Slab Microcavity………...……….……………….16
3.1 L3 Photonic crystal slab microcavity 16
3.2 Relation between radiation rate and 17
3.3 Extraction efficiency and effective extraction rate 19
3.4 Multiple dipole sources…………………………………….21
Chapter 4 Simulation Results for a Photonic Crystal Slab Microcavity with Substrate 39
4.1 L5 Photonic crystal slab microcavity with substrate….39
4.2 Relation between radiation rate and ……………...40
4.3 Extraction efficiency and effective extraction rate……42
4.4 Multiple dipole sources……………………………..…44
Chapter 5 Conclusions 61
References…………………………………………………..63
dc.language.isoen
dc.subject光子晶體zh_TW
dc.subject微共振腔zh_TW
dc.subjectphotonic crystalen
dc.subjectmicrocavityen
dc.title光子晶體平板微共振腔輻射特性之分析zh_TW
dc.titleAnalysis of Radiation Characteristics of Photonic Crystal Slab Microcavitiesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊志忠,張宏鈞,邱奕鵬
dc.subject.keyword光子晶體,微共振腔,zh_TW
dc.subject.keywordphotonic crystal,microcavity,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2005-07-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved