請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38442完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡錦華(Ching-Hwa Tsai) | |
| dc.contributor.author | Yu-Te Chen | en |
| dc.contributor.author | 陳宥德 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:33:42Z | - |
| dc.date.available | 2008-07-20 | |
| dc.date.copyright | 2005-07-20 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-09 | |
| dc.identifier.citation | Adamson, A. L., Darr, D., Holley-Guthrie, E., Johnson, R. A., Mauser, A., Swenson, J. & Kenney, S. (2000). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74, 1224-33.
Adamson, A. L. & Kenney, S. (1999). The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73, 6551-8. Ahmed, M. M., Venkatasubbarao, K., Fruitwala, S. M., Muthukkumar, S., Wood, D. P., Jr., Sells, S. F., Mohiuddin, M. & Rangnekar, V. M. (1996). EGR-1 induction is required for maximal radiosensitivity in A375-C6 melanoma cells. J Biol Chem 271, 29231-7. Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C. & et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-11. Biggin, M., Bodescot, M., Perricaudet, M. & Farrell, P. (1987). Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol 61, 3120-32. Bos, T. J., Bohmann, D., Tsuchie, H., Tjian, R. & Vogt, P. K. (1988). v-jun encodes a nuclear protein with enhancer binding properties of AP-1. Cell 52, 705-12. Cao, X., Mahendran, R., Guy, G. R. & Tan, Y. H. (1992a). Protein phosphatase inhibitors induce the sustained expression of the Egr-1 gene and the hyperphosphorylation of its gene product. J Biol Chem 267, 12991-7. Cao, X., Mahendran, R., Guy, G. R. & Tan, Y. H. (1993). Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem 268, 16949-57. Cao, X. M., Guy, G. R., Sukhatme, V. P. & Tan, Y. H. (1992b). Regulation of the Egr-1 gene by tumor necrosis factor and interferons in primary human fibroblasts. J Biol Chem 267, 1345-9. Cao, X. M., Koski, R. A., Gashler, A., McKiernan, M., Morris, C. F., Gaffney, R., Hay, R. V. & Sukhatme, V. P. (1990). Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol 10, 1931-9. Cayrol, C. & Flemington, E. K. (1995). Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1. J Virol 69, 4206-12. Cayrol, C. & Flemington, E. K. (1996). The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. Embo J 15, 2748-59. Chang, Y., Chang, S. S., Lee, H. H., Doong, S. L., Takada, K. & Tsai, C. H. (2004a). Inhibition of the Epstein-Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol 85, 1371-9. Chang, Y., Lee, H. H., Chang, S. S., Hsu, T. Y., Wang, P. W., Chang, Y. S., Takada, K. & Tsai, C. H. (2004b). Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78, 13028-36. Chang, Y., Sheen, T. S., Lu, J., Huang, Y. T., Chen, J. Y., Yang, C. S. & Tsai, C. H. (1998). Detection of transcripts initiated from two viral promoters (Cp and Wp) in Epstein-Barr virus-infected nasopharyngeal carcinoma cells and biopsies. Lab Invest 78, 715-26. Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H. (1999). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857-66. Chang, Y. N., Dong, D. L., Hayward, G. S. & Hayward, S. D. (1990). The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol 64, 3358-69. Chevallier-Greco, A., Manet, E., Chavrier, P., Mosnier, C., Daillie, J. & Sergeant, A. (1986). Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. Embo J 5, 3243-9. Christy, B. & Nathans, D. (1989). DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A 86, 8737-41. Christy, B. A., Lau, L. F. & Nathans, D. (1988). A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with 'zinc finger' sequences. Proc Natl Acad Sci U S A 85, 7857-61. Countryman, J., Jenson, H., Seibl, R., Wolf, H. & Miller, G. (1987). Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol 61, 3672-9. di Renzo, L., Altiok, A., Klein, G. & Klein, E. (1994). Endogenous TGF-beta contributes to the induction of the EBV lytic cycle in two Burkitt lymphoma cell lines. Int J Cancer 57, 914-9. Epstein, M. A., Achong, B. G. & Barr, Y. M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 15, 702-3. Faggioni, A., Zompetta, C., Grimaldi, S., Barile, G., Frati, L. & Lazdins, J. (1986). Calcium modulation activates Epstein-Barr virus genome in latently infected cells. Science 232, 1554-6. Fahmi, H., Cochet, C., Hmama, Z., Opolon, P. & Joab, I. (2000). Transforming growth factor beta 1 stimulates expression of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA by an indirect mechanism which requires the MAPK kinase pathway. J Virol 74, 5810-8. Farrell, P. J., Rowe, D. T., Rooney, C. M. & Kouzarides, T. (1989). Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. Embo J 8, 127-32. Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W. & Delecluse, H. J. (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. Embo J 19, 3080-9. Feng, W. H., Westphal, E., Mauser, A., Raab-Traub, N., Gulley, M. L., Busson, P. & Kenney, S. C. (2002). Use of adenovirus vectors expressing Epstein-Barr virus (EBV) immediate-early protein BZLF1 or BRLF1 to treat EBV-positive tumors. J Virol 76, 10951-9. Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1995). Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69, 2998-3006. Flemington, E. & Speck, S. H. (1990a). Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64, 1227-32. Flemington, E. & Speck, S. H. (1990b). Epstein-Barr virus BZLF1 trans activator induces the promoter of a cellular cognate gene, c-fos. J Virol 64, 4549-52. Flemington, E. & Speck, S. H. (1990c). Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64, 1217-26. Flemington, E. K., Lytle, J. P., Cayrol, C., Borras, A. M. & Speck, S. H. (1994). DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities. Mol Cell Biol 14, 3041-52. Franza, B. R., Jr., Rauscher, F. J., 3rd, Josephs, S. F. & Curran, T. (1988). The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science 239, 1150-3. Gashler, A. L., Swaminathan, S. & Sukhatme, V. P. (1993). A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol 13, 4556-71. Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M. H. & Shaw, P. E. (1995a). ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. Embo J 14, 951-62. Gille, H., Sharrocks, A. D. & Shaw, P. E. (1992). Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358, 414-7. Gille, H., Strahl, T. & Shaw, P. E. (1995b). Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Curr Biol 5, 1191-200. Gineitis, D. & Treisman, R. (2001). Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem 276, 24531-9. Glaser, R., Zhang, H. Y., Yao, K. T., Zhu, H. C., Wang, F. X., Li, G. Y., Wen, D. S. & Li, Y. P. (1989). Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci U S A 86, 9524-8. Gousseva, N., Kugathasan, K., Chesterman, C. N. & Khachigian, L. M. (2001). Early growth response factor-1 mediates insulin-inducible vascular endothelial cell proliferation and regrowth after injury. J Cell Biochem 81, 523-34. Grogan, E., Jenson, H., Countryman, J., Heston, L., Gradoville, L. & Miller, G. (1987). Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci U S A 84, 1332-6. Gutsch, D. E., Holley-Guthrie, E. A., Zhang, Q., Stein, B., Blanar, M. A., Baldwin, A. S. & Kenney, S. C. (1994). The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-kappa B. Mol Cell Biol 14, 1939-48. Haupt, S., Berger, M., Goldberg, Z. & Haupt, Y. (2003). Apoptosis - the p53 network. J Cell Sci 116, 4077-85. Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G. & Rickinson, A. (1993). Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A 90, 8479-83. Henle, G. & Henle, W. (1966). Immunofluorescence in cells derived from Burkitt's lymphoma. J Bacteriol 91, 1248-56. Henle, G. & Henle, W. (1976). Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17, 1-7. Henle, G., Henle, W., Clifford, P., Diehl, V., Kafuko, G. W., Kirya, B. G., Klein, G., Morrow, R. H., Munube, G. M., Pike, P., Tukei, P. M. & Ziegler, J. L. (1969). Antibodies to Epstein-Barr virus in Burkitt's lymphoma and control groups. J Natl Cancer Inst 43, 1147-57. Henle, G., Henle, W. & Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101. Henle, W., Diehl, V., Kohn, G., Zur Hausen, H. & Henle, G. (1967). Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157, 1064-5. Henle, W., Hummeler, K. & Henle, G. (1966). Antibody coating and agglutination of virus particles separated from the EB3 line of Burkitt lymphoma cells. J Bacteriol 92, 269-71. Herrera, R. E., Shaw, P. E. & Nordheim, A. (1989). Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340, 68-70. Hodge, C., Liao, J., Stofega, M., Guan, K., Carter-Su, C. & Schwartz, J. (1998). Growth hormone stimulates phosphorylation and activation of elk-1 and expression of c-fos, egr-1, and junB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 273, 31327-36. Holley-Guthrie, E. A., Quinlivan, E. B., Mar, E. C. & Kenney, S. (1990). The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner. J Virol 64, 3753-9. Huang, R. P. & Adamson, E. D. (1995). A biological role for Egr-1 in cell survival following ultra-violet irradiation. Oncogene 10, 467-75. Hudewentz, J., Bornkamm, G. W. & Zur Hausen, H. (1980). Effect of the diterpene ester TPA on Epstein-Barr virus antigen- and DNA synthesis in producer and nonproducer cell lines. Virology 100, 175-8. Jiwa, N. M., Oudejans, J. J., Dukers, D. F., Vos, W., Horstman, A., van der Valk, P., Middledorp, J. M., Walboomers, J. M. & Meijer, C. J. (1995). Immunohistochemical demonstration of different latent membrane protein-1 epitopes of Epstein-Barr virus in lymphoproliferative diseases. J Clin Pathol 48, 438-42. Kaufmann, K. & Thiel, G. (2001). Epidermal growth factor and platelet-derived growth factor induce expression of Egr-1, a zinc finger transcription factor, in human malignant glioma cells. J Neurol Sci 189, 83-91. Kaufmann, K. & Thiel, G. (2002). Epidermal growth factor and thrombin induced proliferation of immortalized human keratinocytes is coupled to the synthesis of Egr-1, a zinc finger transcriptional regulator. J Cell Biochem 85, 381-91. Kenney, S., Holley-Guthrie, E., Mar, E. C. & Smith, M. (1989). The Epstein-Barr virus BMLF1 promoter contains an enhancer element that is responsive to the BZLF1 and BRLF1 transactivators. J Virol 63, 3878-83. Kieff, E. (1996). Epstein-Barr virus and its replication . In Fields virology, B. N. Fields, D. M. Knipe and P. M. Howley, eds (Philadelphia, Pa: Lippincott-Raven), pp.2343-2396 Kieff, E. & Rickinson, A. (2001). Epstein-Barr virus and its replication. In Fields Virology, D. M. Knipe and P. M. Howley, eds (Philadelphia, Pa: Lippincott, Williams & Wilkins), pp.2511-2574. Khachigian, L. M., Lindner, V., Williams, A. J. & Collins, T. (1996). Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271, 1427-31. Khachigian, L. M., Williams, A. J. & Collins, T. (1995). Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells. J Biol Chem 270, 27679-86. Kharbanda, S., Nakamura, T., Stone, R., Hass, R., Bernstein, S., Datta, R., Sukhatme, V. P. & Kufe, D. (1991). Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J Clin Invest 88, 571-7. Kolman, J. L., Taylor, N., Gradoville, L., Countryman, J. & Miller, G. (1996). Comparing transcriptional activation and autostimulation by ZEBRA and ZEBRA/c-Fos chimeras. J Virol 70, 1493-504. Konig, H. (1991). Cell-type specific multiprotein complex formation over the c-fos serum response element in vivo: ternary complex formation is not required for the induction of c-fos. Nucleic Acids Res 19, 3607-11. Kouzarides, T., Packham, G., Cook, A. & Farrell, P. J. (1991). The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6, 195-204. Labrecque, L. G., Barnes, D. M., Fentiman, I. S. & Griffin, B. E. (1995). Epstein-Barr virus in epithelial cell tumors: a breast cancer study. Cancer Res 55, 39-45. Le Roux, F., Sergeant, A. & Corbo, L. (1996). Epstein-Barr virus (EBV) EB1/Zta protein provided in trans and competent for the activation of productive cycle genes does not activate the BZLF1 gene in the EBV genome. J Gen Virol 77 ( Pt 3), 501-9. Lemaire, P., Revelant, O., Bravo, R. & Charnay, P. (1988). Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A 85, 4691-5. Lieberman, P. M. & Berk, A. J. (1990). In vitro transcriptional activation, dimerization, and DNA-binding specificity of the Epstein-Barr virus Zta protein. J Virol 64, 2560-8. Lim, C. P., Jain, N. & Cao, X. (1998). Stress-induced immediate-early gene, egr-1, involves activation of p38/JNK1. Oncogene 16, 2915-26. Lim, R. W., Varnum, B. C. & Herschman, H. R. (1987). Cloning of tetradecanoyl phorbol ester-induced 'primary response' sequences and their expression in density-arrested Swiss 3T3 cells and a TPA non-proliferative variant. Oncogene 1, 263-70. Lin, C. T., Chan, W. Y., Chen, W., Huang, H. M., Wu, H. C., Hsu, M. M., Chuang, S. M. & Wang, C. C. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68, 716-27. Liu, C., Adamson, E. & Mercola, D. (1996). Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1. Proc Natl Acad Sci U S A 93, 11831-6. Lu, J., Chen, S. Y., Chua, H. H., Liu, Y. S., Huang, Y. T., Chang, Y., Chen, J. Y., Sheen, T. S. & Tsai, C. H. (2000). Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol 74, 7391-9. Lu, J., Chua, H. H., Chen, S. Y., Chen, J. Y. & Tsai, C. H. (2003). Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res 63, 256-62. Luka, J., Kallin, B. & Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-31. Mahot, S., Sergeant, A., Drouet, E. & Gruffat, H. (2003). A novel function for the Epstein-Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol 84, 965-74. Manet, E., Gruffat, H., Trescol-Biemont, M. C., Moreno, N., Chambard, P., Giot, J. F. & Sergeant, A. (1989). Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. Embo J 8, 1819-26. Mauser, A., Saito, S., Appella, E., Anderson, C. W., Seaman, W. T. & Kenney, S. (2002). The Epstein-Barr virus immediate-early protein BZLF1 regulates p53 function through multiple mechanisms. J Virol 76, 12503-12. Metzenberg, S. (1990). Levels of Epstein-Barr virus DNA in lymphoblastoid cell lines are correlated with frequencies of spontaneous lytic growth but not with levels of expression of EBNA-1, EBNA-2, or latent membrane protein. J Virol 64, 437-44. Milbrandt, J. (1987). A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238, 797-9. Morrison, T. E. & Kenney, S. C. (2004). BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function. Virology 328, 219-32. Morrison, T. E., Mauser, A., Klingelhutz, A. & Kenney, S. C. (2004). Epstein-Barr virus immediate-early protein BZLF1 inhibits tumor necrosis factor alpha-induced signaling and apoptosis by downregulating tumor necrosis factor receptor 1. J Virol 78, 544-9. Morrison, T. E., Mauser, A., Wong, A., Ting, J. P. & Kenney, S. C. (2001). Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity 15, 787-99. Muthukkumar, S., Nair, P., Sells, S. F., Maddiwar, N. G., Jacob, R. J. & Rangnekar, V. M. (1995). Role of EGR-1 in thapsigargin-inducible apoptosis in the melanoma cell line A375-C6. Mol Cell Biol 15, 6262-72. Nair, P., Muthukkumar, S., Sells, S. F., Han, S. S., Sukhatme, V. P. & Rangnekar, V. M. (1997). Early growth response-1-dependent apoptosis is mediated by p53. J Biol Chem 272, 20131-8. Packham, G., Economou, A., Rooney, C. M., Rowe, D. T. & Farrell, P. J. (1990). Structure and function of the Epstein-Barr virus BZLF1 protein. J Virol 64, 2110-6. Perez-Castillo, A., Pipaon, C., Garcia, I. & Alemany, S. (1993). NGFI-A gene expression is necessary for T lymphocyte proliferation. J Biol Chem 268, 19445-50. Pope, J. H., Horne, M. K. & Scott, W. (1968). Transformation of foetal human keukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. Int J Cancer 3, 857-66. Price, M. A., Cruzalegui, F. H. & Treisman, R. (1996). The p38 and ERK MAP kinase pathways cooperate to activate Ternary Complex Factors and c-fos transcription in response to UV light. Embo J 15, 6552-63. Price, M. A., Rogers, A. E. & Treisman, R. (1995). Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET). Embo J 14, 2589-601. Qualtiere, L. F. & Pearson, G. R. (1979). Epstein-Barr virus-induced membrane antigens: immunochemical characterization of Triton X-100 solubilized viral membrane antigens from EBV-superinfected Raji cells. Int J Cancer 23, 808-17. Ragoczy, T., Heston, L. & Miller, G. (1998). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978-84. Rickinson, A. B., and Kieff, E. (1996). Epstein-Barr virus. In Fields virology, B. N. Fields, D. M. Knipe and P. M. Howley, eds. (Philadelphia, Pa: Lippincott-Raven), pp. 2397-2446 Ragoczy, T. & Miller, G. (2001). Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol 75, 5240-51. Rooney, C. M., Rowe, D. T., Ragot, T. & Farrell, P. J. (1989). The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol 63, 3109-16. Russo, M. W., Sevetson, B. R. & Milbrandt, J. (1995). Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proc Natl Acad Sci U S A 92, 6873-7. Sakamoto, K. M., Bardeleben, C., Yates, K. E., Raines, M. A., Golde, D. W. & Gasson, J. C. (1991). 5' upstream sequence and genomic structure of the human primary response gene, EGR-1/TIS8. Oncogene 6, 867-71. Sato, H., Takeshita, H., Furukawa, M. & Seiki, M. (1992). Epstein-Barr virus BZLF1 transactivator is a negative regulator of Jun. J Virol 66, 4732-6. Seibl, R., Motz, M. & Wolf, H. (1986). Strain-specific transcription and translation of the BamHI Z area of Epstein-Barr Virus. J Virol 60, 902-9. Shibata, D. & Weiss, L. M. (1992). Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol 140, 769-74. Sinclair, A. J. (2003). bZIP proteins of human gammaherpesviruses. J Gen Virol 84, 1941-9. Sinclair, A. J., Brimmell, M., Shanahan, F. & Farrell, P. J. (1991). Pathways of activation of the Epstein-Barr virus productive cycle. J Virol 65, 2237-44. Sixbey, J. W., Vesterinen, E. H., Nedrud, J. G., Raab-Traub, N., Walton, L. A. & Pagano, J. S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-3. Speck, S. H., Chatila, T. & Flemington, E. (1997). Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5, 399-405. Sukhatme, V. P., Kartha, S., Toback, F. G., Taub, R., Hoover, R. G. & Tsai-Morris, C. H. (1987). A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res 1, 343-55. Svaren, J., Ehrig, T., Abdulkadir, S. A., Ehrengruber, M. U., Watson, M. A. & Milbrandt, J. (2000). EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J Biol Chem 275, 38524-31. Svaren, J., Sevetson, B. R., Apel, E. D., Zimonjic, D. B., Popescu, N. C. & Milbrandt, J. (1996). NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol Cell Biol 16, 3545-53. Takada, K. (1984). Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33, 27-32. Takada, K. & Ono, Y. (1989). Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol 63, 445-9. Thiel, G. & Cibelli, G. (2002). Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193, 287-92. Thiel, G., Kaufmann, K., Magin, A., Lietz, M., Bach, K. & Cramer, M. (2000). The human transcriptional repressor protein NAB1: expression and biological activity. Biochim Biophys Acta 1493, 289-301. Tokunaga, M., Land, C. E., Uemura, Y., Tokudome, T., Tanaka, S. & Sato, E. (1993). Epstein-Barr virus in gastric carcinoma. Am J Pathol 143, 1250-4. Tsai, C. H., Liu, M. T., Chen, M. R., Lu, J., Yang, H. L., Chen, J. Y. & Yang, C. S. (1997). Characterization of Monoclonal Antibodies to the Zta and DNase Proteins of Epstein-Barr Virus. J Biomed Sci 4, 69-77. Tsai, C. H., Williams, M. V. & Glaser, R. (1991). Characterization of two monoclonal antibodies to Epstein-Barr virus diffuse early antigen which react to two different epitopes and have different biological function. J Virol Methods 33, 47-52. Urier, G., Buisson, M., Chambard, P. & Sergeant, A. (1989). The Epstein-Barr virus early protein EB1 activates transcription from different responsive elements including AP-1 binding sites. Embo J 8, 1447-53. Varnum, B. C., Lim, R. W., Kujubu, D. A., Luner, S. J., Kaufman, S. E., Greenberger, J. S., Gasson, J. C. & Herschman, H. R. (1989). Granulocyte-macrophage colony-stimulating factor and tetradecanoyl phorbol acetate induce a distinct, restricted subset of primary-response TIS genes in both proliferating and terminally differentiated myeloid cells. Mol Cell Biol 9, 3580-3. Virolle, T., Adamson, E. D., Baron, V., Birle, D., Mercola, D., Mustelin, T. & de Belle, I. (2001). The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 3, 1124-8. Weiss, L. M., Chen, Y. Y., Liu, X. F. & Shibata, D. (1991). Epstein-Barr virus and Hodgkin's disease. A correlative in situ hybridization and polymerase chain reaction study. Am J Pathol 139, 1259-65. Whitmarsh, A. J., Yang, S. H., Su, M. S., Sharrocks, A. D. & Davis, R. J. (1997). Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol Cell Biol 17, 2360-71. Wittmann, P., Hofler, P. & Bauer, G. (1982). Epstein-barr virus induction by a serum factor: IV. Ubiquitous occurrence of the factor within vertebrates and its interaction with defined lymphoid cell lines. Int J Cancer 30, 503-10. Wung, B. S., Cheng, J. J., Chao, Y. J., Hsieh, H. J. & Wang, D. L. (1999). Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ Res 84, 804-12. Zalani, S., Holley-Guthrie, E. & Kenney, S. (1995). The Zif268 cellular transcription factor activates expression of the Epstein-Barr virus immediate-early BRLF1 promoter. J Virol 69, 3816-23. Zhang, Q., Gutsch, D. & Kenney, S. (1994). Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol Cell Biol 14, 1929-38. zur Hausen, H., Schulte-Holthausen, H., Klein, G., Henle, W., Henle, G., Clifford, P. & Santesson, L. (1970). EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228, 1056-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38442 | - |
| dc.description.abstract | EB病毒的生活史中存在兩種狀態:潛伏期和溶裂期。根據過去的研究,當EB病毒進入溶裂期時可能造成細胞的改變。為了解溶裂期進行時對於細胞環境的影響,我們實驗室使用微矩陣分析法偵測先前建立的293A潛伏期與溶裂期細胞株中,並比較細胞基因表現之差異。結果發現,相較於潛伏期細胞,溶裂期細胞中可以偵測到較高量的Egr-1基因產物。利用西方墨點分析實驗,證實溶裂期細胞中Egr-1蛋白質質表現確實高於潛伏期細胞中。另一方面,在使用針對Zta專一性之siRNA表現質體(siZ1)抑制溶裂期發生時,即無法偵測到Egr-1蛋白質質量增高的現象。據此,推測當細胞中的EB病毒進入溶裂期時可引發Egr-1蛋白質質表現量上升。為進一步探討Egr-1蛋白質質量之增加是否受到病毒溶裂期基因產物的影響,利用單一基因轉染的方式將溶裂期病毒蛋白質質表現於不含EB病毒的細胞株中,並偵測Egr-1蛋白質質之表現。由實驗結果得知,在NPC-TW01和NPC-TW04細胞中,Zta蛋白質質可明顯促進細胞中Egr-1蛋白質量增加。同樣地,在先前實驗室所建立之Zta誘發性細胞株(HONE-1-52)也觀察到相同結果。進一步,利用報導質體實驗分析,也能證實Zta可以轉活化Egr-1啟動子之活性。根據以上結果得知,Zta蛋白質可以利用轉錄層級的機制調控Egr-1基因,並促進其蛋白質之表現。為了解Zta啟動Egr-1基因的詳細機制,利用一系列Egr-1啟動子的刪除突變報導質體進行分析,發現啟動子上–503bp~–438bp和–438bp~–395bp的區域對於Zta活化Egr-1啟動子而言是重要的。根據過去文獻記載以及利用軟體分析後知道-452bp~-438bp區域中存在兩個可能的ZREs (Zta response elements),而-431bp~-407bp間存在一Elk-1/SRF結合位置。另一方面,由過去研究Egr-1基因的調控,已知細胞受到血清或者生長因子的刺激下,可以藉由活化的Ras/Raf/Mek/Erk/Elk訊息路徑啟動Egr-1基因表現。有趣的是,在HONE-1-52細胞中,Zta確實可使Erk蛋白質的磷酸化的程度增加。而加入Erk抑制劑時,即使Zta蛋白質表現也無法有效活化Egr-1基因,代表Erk的磷酸化對於Zta啟動Egr-1基因而言相當重要。綜合以上結果,EB病毒溶裂期轉活化子Zta可能藉由直接與啟動子之結合以及間接活化Erk訊息誘發細胞中Egr-1基因之表現。然而,就目前為止,Zta所引發的Egr-1蛋白質表現其生物功能仍然未知,需要日後投入更多的研究工作以探討之。 | zh_TW |
| dc.description.abstract | Epstein-Barr virus (EBV) contains two phases in its life cycle: latent and lytic stages. According to previous studies, the progression of lytic cycle may affect many cellular events. To address this issue, we performed a microarray analysis on two groups of EBV-infected 293 cells that were distinguished into latent and lytic clones. We found that the expression of early growth response-1 (Egr-1), a zinc finger transcription factor, was increased in lytic clones, but not in latent clones. Immunoblot analysis confirmed that Egr-1 protein expression was associated with EBV lytic cycle. Zta is an immediate-early protein encoded by BZLF1 gene and plays a significant role to initiate viral lytic cascades. By using BZLF1-targetd siRNA to block EBV lytic progression, the expression of Egr-1 protein was reduced. Therefore, we suggested that the expression of Egr-1 protein was the downstream event of EBV lytic cycle. Furthermore, by using single gene transfection assay, we identified that Zta could induce Egr-1 protein expression in two EBV-negative cell lines, NPC-TW01 and NPC-TW04. In addition, in a Zta-inducible cell line (HONE-1-52), Egr-1 protein was also induced during Zta expression. As the regulator of EBV lytic cycle, Zta also affects the cellular gene expression at transcriptional level either by directly binding to a consensus DNA sequence or indirectly activating cellular signaling pathways. According to the reporter assays, Zta could activate Egr-1 promoter. By analysis of the deletion mutants of Egr-1 promoter, two regions relative to the transcriptional start site, -503bp~-438bp and –438bp~-395bp, were proven to critical for Zta-mediated activation. These two promoter regions contained putative ZREs (Zta response elements) and Elk-1/SRF binding site, respectively. The Elk-1/SRF binding site was crucial for Egr-1 gene expression upon Ras/Raf/Mek/Erk/Elk signaling pathway triggered by serum and many growth factors. Interestingly, Zta could dramatically increase the phosphorylattion status of Erk-1 protein in our study. In the presence of Erk phosphorylation inhibitos, PD98059 and U0126, Zta-induced Egr-1 protein expression was decreased significantly. Taken together, we demonstrate that the EBV lytic transactivator Zta can induce the expression of cellular Egr-1 gene, and the mechanism is dependent on direct DNA binding and indirect Erk signal activation. The biological meanings of Zta-induced Egr-1 protein remain be investigated in future study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:33:42Z (GMT). No. of bitstreams: 1 ntu-94-R92445122-1.pdf: 1025829 bytes, checksum: f503037eca2853607ef18f494294751b (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘要 ................................................. I
Abstract ............................................ III 目錄 ................................................ V 序論 ................................................. 1 EB病毒 ............................................... 1 發現歷史,病毒分類以及相關疾病 ....................... 1 EB病毒結構以及基因體 ................................. 2 EB病毒生活史 ......................................... 2 Zta蛋白質............................................. 4 基因調控 ............................................. 4 蛋白質結構與功能 ...................................... 5 Egr-1蛋白質 ........................................... 7 發現歷史 .............................................. 7 蛋白質結構 ............................................ 7 基因調控 .............................................. 8 EB病毒溶裂期與Egr-1蛋白質 ............................. 9 目的 .................................................. 10 材料 .................................................. 11 藥品 (Chemicals) ...................................... 11 套裝試劑 (Kits) ....................................... 12 抗體 (Antibodies) ..................................... 13 溶液 (Solutions) ...................................... 13 方法 .................................................. 15 細胞 (Cells) ........................................ 15 細胞培養以及處理 (Cell culture and treatments)....... 15 質體 (Plasmids) .................................... 16 建構Egr-1啟動子之刪除突變質體 (Construction of the deletion mutants of Egr-1 promoter) ..................................... 16 製備大量質體DNA (Preparation of plasmid DBNA in large scale) ............... 17 暫時性轉染 (Transient transfection) ................ 19 西方墨點分析法 (Immunoblot analysis) ............... 19 報導基因分析 (Reporter gene assay) ................. 20 結果 ................................................. 22 討論 ................................................. 29 表與圖 ............................................... 34 參考文獻 ............................................. 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 溶裂期 | zh_TW |
| dc.subject | Egr-1 | zh_TW |
| dc.subject | Zta | zh_TW |
| dc.subject | EB病毒 | zh_TW |
| dc.subject | Egr-1 | en |
| dc.subject | Epstein-Barr virus | en |
| dc.subject | lytic cycle | en |
| dc.subject | Zta | en |
| dc.title | 探討EB病毒溶裂期轉活化子Zta誘發細胞內Egr-1之基因表現 | zh_TW |
| dc.title | Induction of Early Growth Response (Egr)-1 by Epstein-Barr Virus Lytic Transactivator Zta | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 董馨蓮(Shin-Lian Doong),鄧述諄(Shu-Chun Teng),張堯(Yao Chang) | |
| dc.subject.keyword | EB病毒,溶裂期,Zta,Egr-1, | zh_TW |
| dc.subject.keyword | Epstein-Barr virus,lytic cycle,Zta,Egr-1, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
