請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38436完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝 | |
| dc.contributor.author | Fang-Yi Lin | en |
| dc.contributor.author | 林芳儀 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:33:30Z | - |
| dc.date.available | 2005-07-14 | |
| dc.date.copyright | 2005-07-14 | |
| dc.date.issued | 2004 | |
| dc.date.submitted | 2005-07-08 | |
| dc.identifier.citation | 參考資料
Atlanta, G.. A.; ASHRAE handbook. Equipment, pp.11-16, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (1983) Basic, A. and M. P. Dudukovic; 'Liquid Holdup in Rotating Packed-Beds - Examination of the Film Flow Assumption,' AIChE J., 41, 301 (1995) Bolles, W. L. and J. R. Fair; 'Distillation,' I. Chem. Eng. Symp. Ser. , 56, 3.3 (1979) Brown, G. G., “Unit Operations”, Wiley, 16, 1950 Burns, J. R., J. N. Jamil and C. Ramshaw; 'Process Intensification: Operating Characteristics of Rotating Packed Beds - Determination of Liquid Hold-up for a High-Voidage Structured Packing,' Chem. Eng. Sci., 55, 2401 (2000) Burns, J. R. and C. Ramshaw; 'Process Intensification: Visual Study of Liquid Maldistribution in Rotating Packed Beds,' Chem. Eng. Sci., 51, 1347 (1996) Chandra, A., P. S. Goswami and D. P. Rao; 'Characteristics of Flow in a Rotating Packed Bed (HIGEE) with Split Packing,' Ind. Eng. Chem. Res., 44, 4051 (2005) Chen, J. F., Y. H. Wang, F. Guo, X. M. Wang and C. Zheng; 'Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation,' Ind. Eng. Chem. Res., 39, 948 (2000) Chen, J., Y. Li., Y. Wang., J. Yun., D. Cao;'Preparation and Characterization of Zinc Sulfide Nanoparticles under High-Gravity Environment,' Mater. Res. Bull., 39, 185 (2004) Chen, Y. H., C. Y. Chang, W. L. Su, C. C. Chen, C. Y. Chiu, Y. H. Yu, P. C. Chiang and S. I. M. Chiang; 'Modeling Ozone Contacting Process in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 43, 228 (2004a) Chen, Y. H., C. Y. Chang, W. L. Su, C. Y. Chiu, Y. H. Yu, P. C. Chiang, C. F. Chang, J. L. Shie, C. S. Chiou and S. I. Chiang; 'Ozonation of CI Reactive Black 5 using rotating packed bed and stirred tank reactor,' J. Chem. Tech. Bio., 80, 68 (2005b) Chen, Y. H., C. Y. Chiu, C. Y. Chang, Y. H. Huang, Y. H. Yu, P. C. Chiang, J.L. Shie and C. S. Chiou; 'Modeling Ozonation Process with Pollutant in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 44, 21 (2005a) Chen, Y. S., C. C. Lin and H. S. Liu; 'Mass Transfer in a Rotating Packed Bed with Viscous Newtonian and Non-Newtonian Fluids,' Ind. Eng. Chem. Res., 44, 1043 (2005c) Chen, Y. S. and H. S. Liu; 'Absorption of VOCs in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 41, 1583 (2002) Chen, Y. S., H. S. Liu, C. C. Lin, W. T. Liu;'Micromixing in a Rotating Packed Bed,' J. Chem. Eng. Japan, 37, 1122 (2004c) Coughlin, R. W.; 'Effect of Liquid-Packing Surface Interaction on Gas Absorption and Flooding in a Packed Column,' AICHE J., 15, 654 (1969) Danckwerts, P. V.; 'Significance of Liquid-film Coefficients in Gas Absorption, ' Ind. Eng. Chem., 43, 1460 (1951) Davidson, J. F.; 'The Hold-up and Liquid Film Coefficient of Packed Towers Part Ii: Statistical Models of the Random Packing,' Trans. Instn Chem. Engrs., 37, 131 (1959) Eckert, J. S. ; “Absorption Process Utilizing Packed Towers,” Ind. Eng. Chem., 59, 2 (1967) Eckert, J. S., E. H. Foote and L. F. Walter; 'What Affects Packing Performance ' Chem. Eng. Prog., 62, 1 (1966) Guo, F., C. Zheng, K. Guo, Y. D. Feng and N. C. Gardner; 'Hydrodynamics and Mass Transfer in Crossflow Rotating Packed Bed,' Chem. Eng. Sci., 52, 3853 (1997) Guo, K., F. Guo, Y. D. Feng, J. F. Chen, C. Zheng and N. C. Gardner; 'Synchronous Visual and Rtd Study on Liquid Flow in Rotating Packed-Bed Contactor,' Chem. Eng. Sci., 55, 1699 (2000) Kelleher, T. and J. R. Fair; 'Distillation Studies in a High-Gravity Contactor,' Ind. Eng. Chem. Res., 35, 4646 (1996) Keyvani, M. and N. C. Gardner; 'Operating Characteristics of Rotating Beds,' Chem. Eng. Prog., 85, 48 (1989) Kumer, M. P. and D. P. Rao; 'Studies on a High-Gravity Gas-Liquid Contactor,' Ind. Eng. Chem. Res., 29, 917 (1990) Kwok, D. Y. and A. W. Neumann:”Contact angle Measurement and Contact angle Interpretation,” Adv. Colloid interface sci., 81,167 (1999) Laso, M., M. Henruqyes de Brito, P. Bomio and U. von Stockar; “Liquid-side Mass Transfer Characteristics of a Structured Packing,” Chem. Eng. J., 58, 251 (1995) Lin, C. C., Y. S. Chen and H. S. Liu; 'Prediction of Liquid Holdup in Countercurrent-Flow Rotating Packed Bed,' Trans. Inst. Chem. Eng. Part A, 78, 397 (2000) Lin, C. C., T. J. Ho and W. T. Liu; 'Distillation in a Rotating Packed Bed,' J. Chem. Eng. Japan, 35, 1298 (2002) Lin, C. C. and H. S. Liu; 'Adsorption in a Centrifugal Field: Basic Dye Adsorption by Activated Carbon,' Ind. Eng. Chem. Res., 39, 161 (2000) Lin, C. C. and W. T. Liu; 'Ozone Oxidation in a Rotating Packed Bed,' J. Chem. Technol. Biotechnol., 78, 138 (2003) Lin, C. C., W. T. Liu and C. S. Tan; 'Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 42, 2381 (2003) Lin, C. C., T. Y. Wei, W. T. Liu and K. P. Shen; 'Removal of VOCs from Gaseous Streams in a High-Voidage Rotating Packed Bed,' J. Chem . Eng. Japan, 37, 12 (2004a) Lin, C. C., Y. S. Chen, H. S. Liu; 'Adsorption of Dodecane from Water in a Rotating Packed Bed,' J. Chin. Inst. Chem. Engrs., 35, 531 (2004b) Linek, V., P. Petriked, P. Benes and R. Braun; 'Effective Interfacial Area and Liquid Side Mass Transfer Coefficient in Absorption Columns Packed with Hydrophilised and Untreated Plastic Packings,' Chem. Eng. Res. Des., 62, 13 (1984) Liu, H. S., C. C. Lin, S. C. Wu and H. W. Hsu; 'Characteristics of a Rotating Packed Bed,' Ind. Eng. Chem. Res., 35, 3590 (1996) Munjal, S., M. P. Dudukovic and P. Ramachandran; 'Mass-Transfer in Rotating Packed Beds - I. Development of Gas-Liquid and Liquid-Solid Mass-Transfer Correlations,' Chemical Engineering Science, 44, 2245 (1989a) Munjal, S., M. P. Dudukovic and P. Ramachandran; 'Mass-Transfer in Rotating Packed Beds - II. Experimental Results and Comparison with Theory and Gravity Flow,' Chem. Eng. Sci., 44, 2257 (1989b) Onda, K., H. Takeuchi and Y. Okumoto; 'Mass Transfer Coefficients between Gas and Liquid Phases in Packed Columns,' J. Chem. Eng. Japan, 1, 56 (1968) Perry, R. H. and D. W. Green; Perry's Chemical Engineers' Handbook, 6th ed., pp. McGraw-Hill, New York (1984) Ramshaw, C. and R. H. Mallinson; 'Mass Transfer Process,' U.S. Patent 4,283,255 (1981) Rao, D. P., A. Bhowal and P. S. Goswami; 'Process Intensification in Rotating Packed Beds (HIGEE):An Appraisal,' Ind. Eng.Chem. Res., 43, 1150 (2004) Sahay, B. N. and M. M., Sharma; 'Effective Interfacial Area and Liquid and Gas Side Mass Transfer Coefficients in a Packed Column,' Chem. Eng. Sci., 28, 41 (1973) Sandilya, P., D. P. Rao, A. Sharma and G. Biswas; 'Gas-Phase Mass Transfer in a Centrifugal Contactor,' Ind. Eng. Chem. Res., 40, 384 (2001) Sawistowski, H.; 'Flooding Velocities in Packed Columns Operating at Reduced Pressure,' Chem. Eng. Sci., 6, 138 (1957) Sherwood, T. K. and F. A. L. Holloway; 'Flooding velocities in Packed Columns,'Ind. Eng. Chem., 30, 765 (1938) Singh, S. P., J. H. Wilson, R. M. Counce, J. F. Villiersfisher, H. L. Jennings, A. J. Lucero, G. D. Reed, R. A. Ashworth and M. G. Elliott; 'Removal of Volatile Organic-Compounds from Groundwater Using a Rotary Air Stripper,' Ind. Eng. Chem. Res., 31, 574 (1992) Srinivasan, V. and R. C. Aiken; 'Mass Transfer to Droplets Formed by The Controlled Breakup of A Cylindrical Jet-Physical Absorption,' Chem. Eng. Sci., 43, 3141 (1988) Tung, H. H. and R. S. H. Mah; 'Modeling Liquid Mass Transfer in Higee Separation Process,' Chem. Eng. Commun., 39, 147 (1985) Ulman, A.; “Formation and Structure of Self-Assembled Monolayers,” Chem. Rev., 96, 1533 (1996) Vivian, J. E., P. L. Brain and V. J. Krukonis; 'The Influence of Gravitational force on Gas Absorption in a Packed Column ,' AICHE J., 11,1088 (1965) Zheng, C., K. Guo, Y. Song, X. Zhou, D. Ai, Z. Xin and N. C. Gardener; 'Industrial Practice of HIGRAVITEC Water Deaeration. In Process Intensification in Practice-Applications & Opportunitied,' (Proceedings of the 2nd International Conference, Antwerp, Belgium), BHR Group Limited/PEP: Suffolk, U. K., 273 (1997) Zheng, C., K. Guo, Y. D. Feng, C. Yang and N. C. Gardner; 'Pressure Drop of Centripetal Gas Flow through Rotating Beds,' Ind. Eng. Chem. Res., 39, 829 (2000) 王樹楹,現代填料塔技術指南,中國石化出版社 (1997) 陳昱劭,旋轉填充床中黏度對質傳影響之研究,台灣大學化學工程研究所 博士論文 (2004) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38436 | - |
| dc.description.abstract | 摘 要
本論文主要目的在於研究旋轉填充床中,填充物型態對質傳以及液體流態的影響。實驗中以氮氣氣提水中溶氧為實驗系統,比較液膜質傳係數(kLa)數值大小以得知質傳效率的優劣,在填充物的部分則選用了13種不同尺寸大小、材質、形狀、親疏水表面及構造型態的填充物進行研究。 經由實驗結果發現,填充物比表面積的大小與質傳係數間並無明顯正比關係;在材質方面,陶瓷材質填充物具有最佳的質傳效果;在幾何形狀的部份,由於拉西環及矩鞍容易造成液體流動的死角,因此質傳效果較圓珠為差;此外,親水表面填充物質傳效率優於疏水表面填充物,其質傳係數可比填充疏水表面填充物高11%~43%;在 Structured packing部分,填充金屬絲網的質傳效果較葉片及鋼圈為好。 經由實驗結果迴歸修正,提出不同的填充物的液膜質傳係數填充物修正因子,但修正因子與填充物特性,諸如:比表面積、孔隙度、水力半徑,並未發現明顯之關係。此外,本研究初步建立液膜流模型與液滴流模型,探討旋轉填充床內液體流態與轉速及填充物型態間的影響,並進一步分析液膜流與液滴流對質傳的貢獻比例。 將各種類型填充物的氣提水中溶氧實驗結果以及流態模型結論作一整理分析可以得知,質傳效果最佳的填充物必須同時具有親水表面,以增加液膜流的質傳效率,且其結構須能幫助液體碎裂成更多粒徑小、總表面積大的小液滴,以增加質傳有效界面積,提高液滴流的質傳效率。 | zh_TW |
| dc.description.abstract | Abstract
In this study, the packing effect in rotating packed bed was investigated. The mass transfer coefficients (kLa) were obtained for deoxygenation from water by nitrogen stream. Random packings were used with the variation in sizes, materials, shapes, surface properties together with some structured packings. According to the experimental results, there was no obvious strong relationship between packing specific surface area and mass transfer coefficient. As to materials, ceramic packings had superior mass transfer efficiency. And probably because the shape of Raschig rings and saddle type might hinder liquid distribution, the mass transfer efficiency of spherical packings was higher than those of Raschig rings and saddle type. Besides, the kLa values for hydrophilic packings were generally higher by about 11%~43% than those of hydrophobic packings. Moreover, the mass transfer of wire mesh was better than that of blades and steel rings. We proposed a so-called packing factor to correct the mass transfer coefficient due to the discrepancy among experimental data. However, there is no obvious relationship between packing factors and packing characteristics, including specific surface area, porosity and hydraulic diameter. Furthermore, we developed preliminary film flow model and droplet flow model to investigate how rotor speed and packing characteristics influence flow pattern within rotating packed bed. Also, we analyzed the contribution of film flow and droplet flow to mass transfer in the rotating packed bed. Based on experimental and theoretical results, the superior performance of packings could be obtained with the hydrophilic surface for enhancing mass transfer caused by film flow and the conformation of breaking liquid into smaller droplets that raise effective interfacial area. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:33:30Z (GMT). No. of bitstreams: 1 ntu-93-R92524026-1.pdf: 1993548 bytes, checksum: ab9a2a3ca914fc587e54a67131dce1a0 (MD5) Previous issue date: 2004 | en |
| dc.description.tableofcontents | 目 錄
摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1 序言 1 1-2 研究方向 2 第二章 文獻回顧 3 2-1 旋轉填充床之簡介 3 2-1-1 旋轉填充床起源 3 2-1-2 旋轉填充床基本構造 4 2-1-3 旋轉填充床發展情況 5 2-1-4 旋轉填充床的優點與應用 10 2-2 旋轉填充床之特性 19 2-2-1 液體滯留量 19 2-1-2 液體流態 20 2-1-3 液膜質傳係數 21 2-3 填充床中填充物之特性 25 2-3-1 傳統填充床填充物相關文獻 26 2-3-2 旋轉填充床填充物相關文獻 29 第三章 實驗裝置與研究方法 38 3-1 實驗裝置 38 3-2 實驗方法 41 3-3 液膜質傳係數求法 45 第四章 結果與討論 47 4-1不同操作條件對質傳的影響 48 4-1-1 氣體流量對質傳的影響 48 4-1-2 液體流量對質傳的影響 49 4-1-3 轉速對質傳的影響 49 4-2 Random packing之比較 55 4-2-1不同大小Random packing之比較 55 4-2-2不同材質Random packing之比較 62 4-2-3不同幾何形狀Random packing之比較 67 4-2-4 親疏水表面Random packing之比較 73 4-3 不同型態的Structured packing之比較 84 4-4 Random packing與Structured packing之比較 88 4-5 旋轉填充床中填充物修正因子的探討 93 4-6 旋轉填充床中液體流態分析討論 107 4-6-1 液膜流模型的建立 107 4-6-2 液滴流模型的建立 108 4-6-3 液膜流與液滴流質傳貢獻比例分析 110 第五章 結論 120 參考資料 124 符號說明 129 附錄A:氮氣氣提水中溶氧液膜質傳係數實驗數據………………...133 附錄B:液滴流速度估算式中經驗常數E的求法…..…………….....146 附錄C: 非球型填充物等體積球直徑(dP)的求法……………..….....147 圖 目 錄 圖2-1-1 逆流式旋轉填充床構造圖 (陳, 2004) 14 圖2-1-2 錯流式旋轉填充床構造圖 (Guo et al. , 1997) 15 圖2-1-3 旋轉填充床構造圖 (Ramshaw and Mallinson, 1981) 16 圖2-1-4 旋轉填充床構造圖 (Ramshaw and Mallinson, 1983) 17 圖2-1-5 旋轉填充床構造圖 (Keyvani and Gardner, 1989) 18 圖2-2-1 Pore Flow、Droplet Flow及Film Flow三種流態示意圖 (Burns and Ramshaw, 1996)..……………………………….24 圖2-3-1 Na2SO4濃度改變與液體流速在不同材質填充物及床高下的 關係圖(Coughlin, 1969)……………………………………34 圖2-3-2 不同填充物所得kLa對VL之關係圖(Sahay and Sharma, 1972)………………………………………………………….35 圖2-3-3 三種不同比表面積Mellapak填充物在不同液量負載點下 HTUL對氣體流速(F-Factor)之關係圖 (Laso et al., 1995) 36 圖2-3-4旋轉填充床中質傳係數與填充物比表面積之關係圖(Keyvani and Gardner, 1989) 37 圖3-1-1 (A)旋轉填充床 (B)旋轉葉片床 構造圖 40 圖3-1-2 以氮氣氣提水中溶氧實驗流程圖 43 圖3-1-3 疏水表面填充物的製備過程 44 圖4-1-1利用直徑為(A)5mm、(B)3mm、(C)2mm壓克力圓珠為填充物,在液量為310ml/min,不同轉速下,kLa與氣量之關係 52 圖4-1-2利用直徑為(A)5mm、(B)3mm、(C)2mm壓克力圓珠為填充 物,在氣量為2 L/min,不同轉速下,kLa與液量之關係…53 圖4-1-3利用直徑為(A)5mm、(B)3mm、(C)2mm壓克力圓珠為填充物,在氣量為2 L/min,不同液量下,kLa與轉速之關係…..54 圖4-2-1 比較直徑為5mm、3mm、2mm壓克力圓珠填充物,在液量 為310ml/min,氣量(A)0.5 (B) 2 (C)3.5 (D)5 L/min,kLa與 轉速之關係…………………………………………………..58 圖 4-2-2 比較直徑為5mm、3mm、2mm壓克力圓珠填充物,在氣量 為2 L/min,液量(A) 310 (B) 570 (C) 842 (D) 1030 ml/min, kLa與轉速之關係……………………………………………59 圖4-2-3旋轉填充床中kLa與填充物比表面積之關係圖……………60 圖4-2-4傳統填充床中,填充(A)Pall rings (B)Intalox saddles (C)Raschig ring時, KGa與填充物比表面積之關係………………….61 圖4-2-5比較直徑5mm陶瓷、金屬、玻璃及壓克力圓珠填充物,液 量為310ml/min,氣量(A)0.5 (B) 2 (C)3.5 (D)5 L/min,kLa與 轉速之關係..…………………………………………………..65 圖 4-2-6比較直徑5mm陶瓷、金屬、玻璃及壓克力圓珠填充物,氣 量為2 L/min,液量(A) 310 (B) 570 (C) 842 (D) 1030 ml/min, kLa與轉速之關係……………………………………………66 圖 4-2-7 比較陶瓷圓珠、陶瓷拉西環及陶瓷矩鞍型填充物,在液量 為310ml/min,氣量(A)0.5 (B) 2 (C)3.5 (D)5 L/min,kLa與轉 速間之關係…………………………………………………...70 圖 4-2-8比較陶瓷圓珠、陶瓷拉西環及陶瓷矩鞍型填充物,在氣量為2L/min,液量為(A)310 (B) 570 (C)842 (D)1030 ml/min,kLa與轉速間之關係……………………………………………...71 圖4-2-9 陶瓷拉西環 (A)液體可利用內部表面 (B)液體不易利用內部表面…………………………………………………………...72 圖4-2-10比較直徑 5mm 親疏水表面陶瓷圓珠填充物, 在液量為 310ml/min,氣量(A)0.5 (B) 2 (C)3.5 (D)5 L/min,kLa與轉速之 關係……………………………………………………………78 圖4-2-11比較直徑5mm親疏水表面玻璃圓珠填充物,在液量為 310ml/min,氣量(A)0.5 (B) 2 (C)3.5 (D)5 L/min,kLa與轉速之 關係……………………………………………………………79 圖4-2-12比較直徑5mm親疏水表面陶瓷圓珠填充物,在氣量為2 L/min,液量(A)310 (B) 570 (C)842 (D)1030 ml/min,kLa與轉 速之關係………………………………………………………80 圖4-2-13比較直徑5mm親疏水表面玻璃圓珠填充物,在氣量為2 L/min,液量(A)310 (B) 570 (C)842 (D)1030 ml/min,kLa與轉 速之關係………………………………………………………81 圖4-2-14觀測親疏水表面形成液滴直徑之實驗設備圖…………….82 圖4-2-15 Linek等人(1984)研究親疏水性填充物對質傳的影響 (A) kLa 對液量作圖 (B) 對液量作圖 (Linek et al.,1984)……...83 圖4-3-1三種不同Structured packing構造圖 (A)Wire mesh (RPB I) (B)Six steel rings (RPB I) (C) Twelve blades (RPB II)……….86 圖4-3-2比較填充三種不同型態的Structured packing,在氣量為2 L/min,液量(A)310 (B) 570 (C)842 (D)1030 ml/min,kLa與轉 速之關係………………………………………………………87 圖4-4-1比較親水陶瓷圓珠與金屬絲網填充物,在液量為310ml/min, 氣量(A)0.5 (B) 2 (C)3.5 (D)5 L/min,kLa與轉速間之關係…91圖4-4-2比較親水陶瓷圓珠與金屬絲網填充物,在氣量為2 L/min,液 量(A)310 (B) 570 (C)842 (D)1030 ml/min,kLa與轉速間之關 係………………………………………………………………92 圖4-5-1 kLa實驗值與式4-7-1所得kLa計算值之比較........................98 圖4-5-2 kLa實驗值與式4-7-2所得kLa計算值之比較………………98 圖4-5-3 kLa實驗值與式4-7-2所得kLa計算值之比較………………99 圖4-5-4 kLa實驗值與式4-7-2所得kLa計算值之比較 (A)金屬絲網 (B)金屬發泡物 (Singh et al., 1996)…………………………103 圖4-5-5 kLa實驗值與式4-7-2所得kLa計算值之比較 (A)金屬絲網 (Chen et al., 2004)……………………………………………104 圖4-5-6 kLa實驗值與式4-7-2所得kLa計算值之比較 (A)金屬絲網 (B)壓克力圓珠 (陳, 2004)…………………………………..105 圖4-5-7修正因子Fp與填充物特性 (A)ε/at (B)atdp (C)ε (D)at間的 關係圖……………………………………………………….106 圖4-6-1液滴上力的平衡圖示……………………………………….115 圖4-6-2重力場下測量液滴直徑實驗裝置圖……………………….116 圖4-6-3填充(A)親水表面陶瓷圓珠 (B)疏水表面陶瓷圓珠 (C)陶瓷矩 鞍 (D)金屬絲網 液滴流與液膜流質傳貢獻百分比與轉速之 關係圖………………………………………………………..117 圖4-6-4填充(A)親水表面陶瓷圓珠 (B)疏水表面陶瓷圓珠 液滴流與 液膜流質傳貢獻百分比與液量之關係圖…………………..118 圖4-6-5填充親疏水表面填充物時液滴流與液膜流質傳貢獻百分比之 比較圖………………………………………………………..119 表 目 錄 表2-1-1 旋轉填充床相關文獻整理 12 表2-3-1 不同填充物的α值與n值(Sherwood and Holloway, 1940)…32 表2-3-2 不同填充物的α1值與γ值(Sahay and Sharma, 1972)……… 33 表2-3-3 不同填充物的的β值與m、n值(Sahay and Sharma,1972). .33 表3-1-1 旋轉填充床與旋轉葉片床規格列表………………………...39 表4-1-1 壓克力圓珠特性列表 51 表4-2-1 不同材質圓珠填充物特性列表……………………………...64 表4-2-2 陶瓷材質填充物特性列表 69 表4-2-3親疏水表面圓珠填充物特性列表…………………………....77 表4-4-1親水表面陶瓷圓珠與金屬絲網填充物特性列表…………....90 表4-5-1各種填充物的修正因子FP 96 表4-5-2文獻中液膜質傳實驗相關整理及由式4-7-2所得填充物修正 因子…………...........................................................................97 表4-6-1在1g之下流經不同填充物所形成液滴直徑及常數C2........114 | |
| dc.language.iso | zh-TW | |
| dc.subject | 質傳 | zh_TW |
| dc.subject | 旋轉填充床 | zh_TW |
| dc.subject | 填充物 | zh_TW |
| dc.subject | mass transfer | en |
| dc.subject | Rotating packed bed | en |
| dc.subject | packing | en |
| dc.title | 旋轉填充床中填充物對質傳影響之研究 | zh_TW |
| dc.title | The Effect of Packing on Mass Transfer in a Rotating Packed Bed | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴怡德,林佳璋,陳昱劭 | |
| dc.subject.keyword | 旋轉填充床,填充物,質傳, | zh_TW |
| dc.subject.keyword | Rotating packed bed,packing,mass transfer, | en |
| dc.relation.page | 158 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-93-1.pdf 未授權公開取用 | 1.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
