請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38428完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳尊賢(Zueng-Sang Chen) | |
| dc.contributor.author | Yun-Jie Lai | en |
| dc.contributor.author | 賴允傑 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:33:16Z | - |
| dc.date.available | 2005-07-14 | |
| dc.date.copyright | 2005-07-14 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-11 | |
| dc.identifier.citation | 內政部營建署。2003。污水下水道計畫概況。內政部營建署九十二年台閩地區營建統計年報光碟版。(資料查閱自內政部營建署網站www.cpami.gov.tw)
台北市工務局衛工處。2005。台北市污水下水道計畫。(資料查閱自台北市工務局衛工處網站 www.sew.gov.tw) 行政院農業委員會、農業試驗所、中華永續農業協會。2001。作物施肥手冊。第五版。p.26-27。 朱敬平,李篤中。2001。污泥處置 (I):簡介及膠羽特性。台大工程學刊81:47-58。 朱敬平,李篤中。2002。污泥處置 (IV):策略與永續利用。台大工程學刊84:91-101。 江康鈺,王鯤生。1997。污泥熔融處理及資源再利用技術。工業污染防制 64:156-188。 李伯興,林財富,張袓恩,高銘木,陳鼎勳。2000。事業污泥再利用可行性評估研究。第十五屆廢棄物處理技術研討會論文集。中華民國環境工程學會。 黃裕銘。2000。蔬菜合理化施肥的原則與推薦量。合理化施肥推廣手冊。行政院農業委員會與臺灣省政府農林廳出版,豐年社編印。 莊順興,張添晉,林獻山,許鎮龍,洪明宏。2002。下水污泥綠地、農地利用手冊之研訂。內政部營建署委託台灣水環境再生協會研究報告。 陳勝一,林志高。2001。污泥中重金屬生物溶出技術之評估。工業污染防治。77:72-94。 經濟部工業局。2004。污泥處理技術彙編。經濟部工業局編印。332p. 歐陽嶠暉,許鎮龍,藍文忠。1998。都市污水處理廠之污泥處理與資源化再利用之研究。內政部營建署委託國立中央大學環境工程研究所研究報告。 歐陽嶠暉。2002。台灣下水道發展策略。中興工程科技研究發展基金會。 蔣本基,楊萬發,張怡怡,翁誌煌。2002。工業區污水處理廠汙泥減量及資源化再利用。工業污染防治。81:125-140。 駱尚廉,楊萬發。1999。環境工程二:下水道工程。茂昌出版社。 環保署。1998。地面水體分類及水質標準。中華民國八十七年六月二十四日行政院環境保護署(八七)環署水字第○○三九一五九號令修正發布全文七條。 環保署。2001。地下水污染管制標準。中華民國九十年十一月二十一日行政院環境保護署(九0)環署水字第○○七三六八○號令訂定發布全文六條。 謝哲生,盧至仁,邱應志譯。2001。都市廢水污泥處理。國立編譯館。 Bohn, H.L., B.L. McNeal, and G.A. O’Connor. 1985. Oxidation and reduction. p. 262-289. In H.L. Bohn, B.L. McNeal, and G.A. O’Connor (ed.) Soil chemistry, 2nd ed. John Wiley & Sons Inc. New York. USA. Bray, R.H., and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39-45. Bremner, J.M. 1996. Nitrogen-Total. p. 1085-1121. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. Bremner, J. M., and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification of Kjeldahl method to include nitrate and nitrate. p. 621-622. In A.L. Page, R.H. Miller, and D.R. Keeney (ed.) Methods of soil analysis, Part 2. ASA and SSSA, Madison, WI, USA. CEC (Commission of the European Communities). 1983. Community bureau of reference: certified reference material (CRM) BCR No. 144 – sewage sludge of domestic origin. Brussels, Luxembourg. Cecil, Lue-Hing, D. R. Zenz., and R. Kuchenrither (ed.) 1992. Municipal sewage sludge management: processing, utilization and disposal. Technomic Publishing Company, Inc., Lancaster, PA, USA. Cecil, Lue-Hing, R.I. Pietz, T.C. Granato, J. Gschwind, and D.R. Zenz. 1994. Overview of the past 25 years: Operator’s perspective. p. 7-14. In C.E. Clapp, W.E. Larson, and R.H. Dowdy (ed.) Sewage sludge: Land utilization and the environment. ASA, CSSA, and SSSA, Madison, WI, USA. Clapp, C.E., R.H. Dowdy, D.R. Linden, W.E. Larson, C.M. Hormann, K.E. Smith, T.R. Halbach, H.H. Cheng, and R.C. Polta. 1994. Crop yields, nutrient uptake, soil and water quality during 20 years on the Rosemount sewage sludge watershed. p. 137-148. In C.E. Clapp, W.E. Larson, and R.H. Dowdy (ed.) Sewage sludge: Land utilization and the environment. ASA, CSSA, and SSSA, Madison, WI, USA. Cogger, C.G., A.I. Bary, D.M. Sullivan, and E.A. Myhre. 2004. Biosolids processing effects on first- and second-year available nitrogen. Soil Sci. Soc. Am. J. 68:162-167. Council of the European Communities. 1986. Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC). Official Journal of the European Communities, No L 181/6-12. Daudén, A., D. Quílez, and M.V. Vera, 2004. Pig slurry application and irrigation effects on nitrate leaching in Mediterranean soil lysimeters. J. Environ. Qual. 33:2290-2295. Debosz, K., S.O. Petersen, L.K. Kure, and P. Ambus, 2002. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl. Soil Ecol. 19:237–248. Elliott, H.A., G.A. O’Connor, and S. Brinton, 2002. Phosphorus leaching from biosolids-amended sandy soils. J. Environ. Qual. 31:681-689. Epstein, E., 2003. Land application of sewage sludge and biosolids. CRC Press LLC, Boca Raton, FL, USA. 201p. Evans, T.D., An update on developments in regulations affecting biosolids in the European Union. In Proceedings WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, Feb 21-24, 2001, San Diego, California. Gardner, W.H. 1986. Water content. p. 493-544. In A. Klute, G.S. Campell, R.D. Jackson, M.M. Mortland, and D.R. Nielsen (ed.) Methods of soil analysis, Part 1. 2nd ed. ASA and SSSA, Madison, WI, USA. Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 383-411. In A. Klute, G.S. Campell, R.D. Jackson, M.M. Mortland, and D.R. Nielsen (ed.) Methods of soil analysis, Part 1. 2nd ed. ASA and SSSA, Madison, WI, USA. Heckrath, G., P.C. Brookes, P.R. Poulton, and K.W.T. Goulding. 1995. Phosphorus leaching from soils containing different phosphorus concentrations in the broadbalk experiment. J. Environ. Qual. 24:904-910. Helmke, P.A., and D.L. Sparks. 1996. Lithium, sodium, potassium, rubidium, and cesium. p. 551-574. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. Holford, I.C.R., C. Hird., and R. Lawrie. 1997. Effects of animal effluents on the phosphorus sorption characteristics of soils. Aust. J. Soil Res. 35:365-373. Iranpour, R., H.H.J. Cox, R.J. Kearney, J.H. Clark, A.B. Pincince, and G.T. Daigger. 2004. Regulations for biosolids land application in U.S. and European Union. J. Residuals Sci. and Tec., 1:209-222. Keller, C., S.P. McGrath, and S.J. Dunham. 2002. Trace metal leaching through a soil-grassland system after sewage sludge application. J. Environ. Qual. 31:1550-1560. Kuo, S. 1996. Phosphorus. p. 869-919. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. Linden, D.R., C.E. Clapp, and R.H. Dowdy. 1983. Hydrologic management: nutrients. p. 79-103. In proceedings of the workshop on utilization of municipal wastewater and sludge on land. Riverside: University of California, CA, USA. Logan, T.J., and R.L. Chaney. 1983. Utilization of municipal wastewater and sludge on land: Metals. p. 235-326. In A.L. Page, T.L. Gleason, J.E. Smith, J.K. Iskandar, and L.E. Sommers (ed.) Utilization of municipal wastewater and sludge on land. Riverside: University of California, CA, USA. McBride, M.B., Toxic Metal Accumulation from Agricultural Use of Sludge: Are USEPA Regulations Protective? J. Environ. Qual. 24:5-18 (1995). Mehlich, A. 1953. Determination of P, Ca, Mg, K, Na, and NH4. Mimeo 1953. North Carolina Soil Test Div., Raleigh, NC, USA. Mulvaney, R.L. 1996. Nitrogen-Inorganic forms. p. 1123-1184. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural water. Anal. Chem. Acta. 27:31-36. NRC (National Research Council). 1996. Use of reclaimed water and sludge in food crop production. National Academy Press, Washington, DC, USA. NRC. 2002. Biosolids applied to land: Advancing standards and practices. National Academy Press, Washington, DC, USA. Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. Oberle, S.L., and D.R. Keeney. 1994. Interactions of sewage sludge with soil - crop - water systems. p. 17-20. In C.E. Clapp, W.E. Larson, and R.H. Dowdy (ed.) Sewage sludge: Land utilization and the environment. ASA, CSSA, and SSSA, Madison, WI, USA. O’Connor, G.A., D. Sarkar, S.R. Briton, H.A. Elliott, and F.G. Martin. 2004. Phytoavailability of biosolids phosphorus. J. Environ. Qual. 33:703-712. O’Connor, G.A., H.A. Elliott, N.T. Basta, R.K. Bastian, G.M. Pierzynski, R.C. Sims, and J.E. Smith, Jr. 2005. Sustainable land application: An overview. J. Environ. Qual. 34:7-17. Okun, D.K., 'Wastewater' In Encyclopedia Americana. Grolier Online, 2005. <http://ea.grolier.com> (May. 8, 2005). Page, A.L., A.C. Chang. 1994. Overview of the past 25 years: technical perspective. p. 3-6. In C.E. Clapp, W.E. Larson, and R.H. Dowdy (ed.) Sewage sludge: Land utilization and the environment. ASA, CSSA, and SSSA, Madison, WI, USA. Parker, C.F. and L.E. Sommers, 1983. Mineralization of nitrogen in sewage sludge. J. Environ. Qual. 12:150-156. Peterson, A.E., P.E. Speth, R.B. Corey, T.W. Wright, and P.L. Schlecht. 1994. Effect of twelve years of liquid digested sludge application on the soil phosphorus level. p. 237-247. In C.E. Clapp, W.E. Larson, and R.H. Dowdy (ed.) Sewage sludge: Land utilization and the environment. ASA, CSSA, and SSSA, Madison, WI, USA. Petersen, S.O., Jens, P., and G.H. Rubaek, 2003, Dynamics and plant uptake of nitrogen and phosphorus in soil amended with sewage sludge. Appl. Soil Ecol. 24:187-195 Pierzynski, G.M. 1994. Plant nutrient aspects of sewage sludge. p. 21-25. In C.E. Clapp, W.E. Larson, and R.H. Dowdy (ed.) Sewage sludge: Land utilization and the environment. ASA, CSSA, and SSSA, Madison, WI, USA. Pierzynski, G.M. and K.A. Gehl, 2005. Plant nutrient issues for sustainable land application. J. Environ. Qual. 34:18-28. Rampton, S. 1998. Let them eat nutri-cake: Merriam-Webster thinks our “biosolids” don't stink. (how the word biosolid became a dictionary term). Harper’s Magazine. November 1998. Rhoades, J.D. 1982. Soluble salts. p. 167-179. In A. Klute, G.S. Campell, R.D. Jackson, M.M. Mortland, and D.R. Nielsen (ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA, Madison, WI, USA. Rydin, E., and E. Otabbong. 1997. Potential release of phosphate from soil mixed sewage sludge. J. Environ. Qual. 26:529-534. Sharpley, A.N. 1997. Rainfall frequency and nitrogen and phosphorus runoff from soil amended with poultry litter. J. Environ. Qual. 26:1127-1132. Shober, A.L., R.C. Stehouwer, and K.E. Macneal. 2003. On-farm assessment of biosolids effects on soil and crop tissue quality. J. Environ. Qual. 32:1873-1880. Shober, A.L., and J.T. Sims. 2003. Phosphorus restrictions for land application of biosolids: Current status and future trends. J. Environ. Qual. 32:1955-1964. Siddique, M.T., J.S. Robinson, and B.J. Alloway. 2000. Phosphorus reactions and leaching potential in soils amended with sewage sludge. J. Environ. Qual. 29:1931-1938. Siddique, M.T., and J.S. Robinson. 2003. Phosphorus sorption and availability in soils amended with animal manures and sewage sludge. J. Environ. Qual. 32:1114-1121. Sims, J.T., R.R. Simard, and B.C. Joern. 1998. Phosphorus loss in agricultural drainage: historical perspective and current research. J. Environ. Qual. 27:277-293. Soil Survey Staff. 2003. Keys to Soil Taxonomy. 9th ed. USDA Natural Resources Conservation Service, Washington, DC, USA. Sommers, L.E. 1977. Chemical composition of sewage sludge and analysis of their potential use as fertilizers. J. Environ. Qual. 6:225-232. Spinosa, L., and P.A. Vesilind (ed.) 2001. Sludge into biosolids - Processing, disposal, utilization. IWA Publishing. London, UK. 394p. Spinosa, L., 2004. EU strategy and practice for sludge utilization in agriculture, disposal and landfilling. J. Residuals Sci. and Tec. 1:7-14. Switzenbaum, M.S., Moss, L.H., Epstein, E., Princince, A. and Donovan, J. 1997. Defining biosolids stability. J. Environ. Eng. 123: 1178-1184. The Columbia electronic encyclopedia, Sewerage-historical sewage systems. In The Columbia Electronic Encyclopedia. TheFreeDictionary.com, 2005. <http://columbia.tfd.com/> (June. 15, 2005). Thomas, G.W. 1996. Soil pH and soil acidity. p. 475-490. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. USDA. 1999a. NRCS Conservation practice standard nutrient management Code 590. USDA, Washington, DC, USA. <http://www.nrcs.usda.gov/technical/Standards/nhcp.html> (May. 12 2005). USDA. 1999b. NRCS General manual Title 190 Part 402. Ecological sciences, nutrient management. Policy. USDA, Washington, DC, USA. <http://www.nrcs.usda.gov/technical/ECS/nutrient/gm-190.html> (12 May. 2005). USDC (U.S. Department of Commerce). 1976. National bureau of standards certificate of analysis: standard reference material (SRM) 1573 – tomato leaves. USDC, Washington, DC, USA. USEPA (U.S. Environmental Protection Agency). 1983. Process design manual: Land application of municipal sludge. EPA 625-1-83-016. Office of Res. and Dev., U.S.EPA, Washington, DC, USA. USEPA. 1993. Federal Register: February 19, 1993. 40 CFR Parts 257, 403 and 503. The Standards for the Use or Disposal of Sewage Sludge. Final Rules. EPA 822-Z-93-001. Office of the Wastewater Management, U.S.EPA, Washington, DC, USA. USEPA. 1994. A plain English guide to the EPA part 503 biosolids rule. EPA 832-R-93-003. Office of the Wastewater Management, U.S.EPA, Washington, DC, USA. USEPA. 1995a. Process design manual: Land application of sewage sludge and domestic septage. EPA 625-R-95-001. Office of Res. and Dev., U.S.EPA, Washington, DC, USA. USEPA. 1995b. A guide to the biosolids risk assessments for the EPA Part 503 rule. EPA 832-B-93-005. Office of Res. and Dev., U.S.EPA, Washington, DC, USA. USEPA. 1999. Biosolids generation, use, and disposal in the United States. EPA 530-R-99-009. Office of Solid Waste, U.S.EPA, Washington, DC, USA. USEPA. 2001. Environmental assessment of proposed revisions to the national pollutant discharge elimination system regulation and the effluent guidelines for concentrated animal feeding operations. EPA 821-B-01-001. Office of Science and Technology, U.S.EPA, Washington, DC, USA. UKDEFRA (U.K. Department for Environment, Food and Rural Affairs). 2002. Sewage Treatment in the UK-UK Implementation of the EC Urban Waste Water Treatment Directive. U.K. DEFRA, London, UK. Vesilind, P.A. 1998. Defining biosolids stability – Discussion. J. Environ. Eng. 124(11): 1145-1145. Walkley, A., and I.A. Black. 1934. An examination of Degtjareff method for determining soil organic carbon matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38428 | - |
| dc.description.abstract | 生物固形物 (biosolid) 為「都市廢水處理廠所產生可回收利用之有機固體物質(不論其目前有無回收使用)」。生物固形物施用於農地土壤以往皆是以作物的氮肥需要量為基準,然而,以氮含量為基準施用生物固形物可能會造成過量磷肥的施用,造成地下水磷的污染與水質的優養化,因此,生物固形物的施用和氮的管理便有賴各項的研究與評估。
本研究使用國內污水處理廠的廢水污泥,經乾燥處理成生物固形物後,與盆栽上層0-5 cm壤質土壤混合,於人工氣候室中栽種鳳山小白菜 (Brassica rapa L. Chinensis Group cv. Fengshan pak-choi)。肥料施用量分別以小白菜的氮肥與磷肥的施肥推薦量為基準 (200 kg N ha-1, 25 kg P ha-1),進行兩次的盆栽試驗研究,分為未施肥處理(對照組)、一倍化學氮(磷)肥、一倍氮(磷)肥生物固形物施用量與兩倍氮(磷)肥生物固形物施用量;並以一倍及兩倍台灣年平均雨量 (2500 mm yr-1) 為基準,進行淋洗試驗。 小白菜於播種後第33天採收,各處理間的生長情形及作物產量在統計上均未達到顯著差異,化學肥料處理組中植體的全氮濃度皆顯著高於其他處理組 (p < 0.05),由於部分盆栽因淋洗試驗的進行造成排水不良,植體中氮的吸收量並未因生物固形物施用量的不同而有顯著上的差異;植體中全磷濃度與磷的吸收量皆因生物固形物的施用而增加。 生物固形物施用於土壤後,表層0-10 cm土壤的pH值會顯著高於化學肥料施用處理組 (p < 0.05),約可增加0.3-0.5個pH單位;洗出液的電導度值則於淋洗試驗初期會到達最高值,之後則隨著淋洗時間的增加而下降;洗出液的pH值平均約在6-7之間,高於化學肥料處理組 (pH 4-6)。 生物固形物的施用會造成表層0-10 cm土壤Bray-1磷的累積,由於土壤中Bray-1磷濃度與洗出液中溶解性反應磷的流失量有顯著相關 (p < 0.001),且兩倍雨量淋洗下洗出液中磷的流失量是正常雨量下的3.6倍,因此,生物固形物的施用仍須考量磷流失的風險。 生物固形物施用後,土壤中的可交換性氮較化學肥料處理組增加,且洗出液中可交換性氮的流失量顯著少於化學肥料處理組 (p < 0.05),因此,推測施用生物固形物可以顯著減少可交換性氮的流失。然而,過多的雨量淋洗仍會增加氮的流失,必須配合適度的灌溉與良好的排水,才可避免過量氮的流失。 生物固形物的施用提供了較佳的土壤環境,有助於減少土壤中因淋洗所造成的氮的流失,但會造成表層土壤磷的累積,增加地下水磷污染的風險,於本研究中生物固形物的施用並未對小白菜的產量造成影響。未來生物固形物若欲運用於農地土壤,應以堆肥處理後的型態運用較佳。 | zh_TW |
| dc.description.abstract | Biosolid is the primarily organic solid product produced by municipal wastewater treatment processes which can be beneficially recycled. Applying municipal biosolid to agricultural area is an effective way to recycle the nutrients and organic matter from biosolid. In the past, biosolid application rates were usually applied to the soil based on nitrogen (N) requirements of vegetarian growth. In most cases of the world, applying biosolid based on the crop N needs usually supplies excess phosphorus (P) to the soil, which can cause the surface water or ground water pollution by eutrophication and other undesirable environment effect. Accurate predictions of biosolid application rates are one of the key factors for benefit crops without risk of excess N and P leaching from soil system.
The studied sewage sludge (biosolid) was collected from Nei-Hu sewage treatment in Taipei, Taiwan. The sludge was dewatered and dried for about one month and grounded by the machine. Biosolid was thoroughly mixed with 3.6 kg of Sankengtzu loam soil for plot experiment. Two greenhouse plot studies were conducted based on pak-choi N and P fertilizer recommendation application rate (200 kg N ha-1 and 25 kg P ha-1) were added into the soil on August and September, 2004. In each experiment, four treatments was conducted, including control treatment, biosolid was applied by normal N (or P) fertilizer rate, biosolid was applied by two times of N (or P) fertilizer rate, and a chemical fertilizer application rate treatment. Pak-choi (Brassica rapa L. Chinensis Group cv. Fengshan pak-choi) was seeded and left 6 plants for each plot. The leaching experiment was started after 10 days based on annual and two-times of average precipitation (2500 mm yr-1). Pak-choi was harvested on 33rd day after it was seeding. Plant yield of all the treatments are not significantly different. Under leaching experiment, some biosolid treatments were flooded and make some influences on plant growth. The concentration of total nitrogen in the vegetable of the chemical fertilizer treatment is significantly higher than other treatments (p < 0.05). Nitrogen uptake was not significantly different to the different biosolid application rates (p < 0.05). The total phosphorus concentration and total uptake of vegetable are increasing by the application of biosolid. After application of biosolid into the soil, surface 10 cm soil pH will be significantly higher than that of chemical fertilizer treatment (p < 0.05). The increasing of pH is about 0.3 to 0.5 pH unit and the pH value of leachate solution is ranged from 6 to 7, which also higher than that of chemical treatment (soil pH ranged from 4 to 6). The electrical conductivity (EC) value of leachate solution increase to the highest value at the initial period, then the EC value decrease with the time. Biosolid application can accumulate the Bray-1 phosphorus on the surface 10 cm soil. The increasing of soil Bray-1 phosphorus was significantly correlated to the dissolved labile phosphorus (p < 0.001), and the phosphorus leaching loss under the precipitation of two-times of normal precipitation is more than 3.6 times than that of normal precipitation. We concluded that biosolid application rate should consider the risk of leaching phosphorus loss from the soil system. After biosolid was applied the soil, the soil exchangeable nitrogen is higher than that of chemical fertilizer treatment and the nitrogen loss in the leachate solution is significantly lower than that of chemical fertilizer treatment (p < 0.05). Biosolid application can decrease the loss of exchangeable nitrogen. Too much of precipitation will increase the nitrogen loss. Appropriate irrigation and good drainage can decrease the excess nitrogen and phosphorus leaching loss. Application biosolid into the soil can provide better soil environment condition and decrease the nitrogen loss from leaching, however, available phosphorus will accumulate on the surface soils and increasing the risk of phosphorus loss to the groundwater. From the result of this study, different biosolid application methods do not affect the vegetable yield. In the future, composting of sewage sludge is required to get a better way to recycle the biosolid for land use. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:33:16Z (GMT). No. of bitstreams: 1 ntu-94-R92623002-1.pdf: 1215626 bytes, checksum: 6ace6e6743821dbbd76db5b7809fbfdf (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………………Ι
英文摘要……………………………………………………………………………Ⅲ 目錄…………………………………………………………………………………Ⅴ 表目錄………………………………………………………………………………Ⅶ 圖目錄………………………………………………………………………………Ⅸ 第一章、前言………………………………………………………………………1 第二章、前人研究 第一節、廢水污泥與生物固形物……………………………………………3 第二節、廢水污泥與生物固形物的使用與棄置方式………………………6 第三節、生物固形物施用於農地土壤的歷史………………………………8 第四節、生物固形物施用於農地土壤對作物生長的影響…………………9 一、生物固形物的養分組成分與氮、磷的有效性……………………9 二、作物產量與品質…………………………………………………12 第五節、生物固形物施用於農地土壤對環境的影響………………………14 一、生物固形物施用於農地土壤對土壤特性與洗出液的影響………14 二、以作物所需氮肥或磷肥為基準施用生物固形物於 農地土壤對環境的影響……………………………………………15 三、生物固形物施用於農地土壤後氮與磷的流失…………………16 四、施用生物固形物的風險與法規限制……………………………20 五、歐盟與美國對於生物固形物的相關法規………………………22 第三章、材料與方法 第一節、供試土壤之選擇與採樣…………………………………………25 第二節、供試土壤基本理化性質分析……………………………………27 一、土壤物理性質分析方法…………………………………………27 二、土壤化學性質分析方法…………………………………………28 第三節、供試生物固形物基本性質…………………………………………34 一、生物固形物來源…………………………………………………34 二、供試生物固形物基本理化性質分析……………………………34 第四節、施用生物固形物於土壤中對小白菜的生長、土壤 及洗出液性質的影響………………………………………………35 一、盆栽試驗…………………………………………………………35 二、試驗設計與處理…………………………………………………35 三、盆栽試驗樣品分析…………………………………………………41 第五節、統計分析…………………………………………………………42 第四章、結果與討論 第一節、供試土壤的基本理化性質………………………………………43 第二節、供試生物固形物的基本性質……………………………………45 第三節、生物固形物施用後對土壤環境與洗出液之影響………………48 一、土壤環境…………………………………………………………48 二、洗出液……………………………………………………………66 第四節、生物固形物施用後對小白菜生長之影響…………………………87 一、以氮肥推薦量為基準………………………………………………87 二、以磷肥推薦量為基準………………………………………………90 第五節、生物固形物施用後對土壤有效性養分、小白菜 對養分的吸收與洗出液養分流失量的估算與影響………………93 一、估算方式……………………………………………………………93 二、氮的估算……………………………………………………………94 三、磷的估算……………………………………………………………97 第六節、生物固形物施用於農地土壤的風險與適宜性綜合評估………101 第五章、結論……………………………………………………………………103 第六章、參考文獻………………………………………………………………105 附錄…………………………………………………………………………A1-A35 | |
| dc.language.iso | zh-TW | |
| dc.subject | biosolid | en |
| dc.subject | municipal sewage sludge | en |
| dc.subject | pak-choi | en |
| dc.subject | phosphorus | en |
| dc.subject | leaching | en |
| dc.subject | leachate solution | en |
| dc.subject | nutrient uptake | en |
| dc.subject | nitrogen | en |
| dc.subject | soil characteristics | en |
| dc.title | 短期施用生物固形物對小白菜的產量、養分吸收、土壤及洗出液性質的影響 | zh_TW |
| dc.title | Effects of Short-Term Biosolid Application on the Yields and Nutrient Uptake of Pak-Choi (Brassica rapa), Soil Characteristics and Leachate Solution Properties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾仁賜(Ren-Shih Chung),陳仁炫(Jen-Hshuan Chen) | |
| dc.subject.keyword | 生物固形物,都市廢水污泥,小白菜,養分吸收,土壤性質,淋洗,洗出液,氮,磷, | zh_TW |
| dc.subject.keyword | biosolid,municipal sewage sludge,pak-choi,nutrient uptake,soil characteristics,leaching,leachate solution,nitrogen,phosphorus, | en |
| dc.relation.page | 163 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
