Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理組
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38423
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁崇雄(C. S. Ong)
dc.contributor.authorThomas W. Y. Chenen
dc.contributor.author陳文耀zh_TW
dc.date.accessioned2021-06-13T16:33:07Z-
dc.date.available2005-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-09
dc.identifier.citationEnglish Reference
[1] Ahern, D. et al., (2004), CMMI Distilled: A Practical Introduction to Integrated Process Improvement, 2nd Edition, Addison Wesley Professional, 2004, pp. 5~6.
[2] Anderson, M. et al., (2003), “Practical Approaches to APC”, “AEC/APC Symposium XV”, Sep. 2003.
[3] Bore, B. (2001), The Art of Strategic Planning for Information Technology, Second Edition, John Wiley & Sons, Inc, 2001, pp. 155~157.
[4] Campbell, W. J. (1999), “Model Predictive Run-to-Run Control of Chemical Mechanical Planarization”, PhD thesis, University of Texas at Austin, 1999.
[5] Chen, Thomas W. Y. (2003), “From EES to Engineering Chain Management”, “AEC/APC Symposium Asia 2003”, Dec. 2003, Taiwan.
[6] Chen, Thomas W. Y. (2004), “The Road Ahead – From EES to Engineering Chain Management”, “Manufacturing Engineering Revolution, SEMICON Japan 2004”, pp. 89~111.
[7] Crandell, B. et al., (2001), “e-Manufacturing Requirement”, “SEMI, e-Manufacturing Workshop”, July, 2001.
[8] Curley, M. (2004), Managing Information Technology for Business Value, Intel Press, 2004, p.15.
[9] Goldstein, B. et al., (2003), Semiconductor Microelectronics and Nanoelectronics Programs, NIST, National Institute of Standards and Technology, Jul., 2003, pp. 160~161.
[10] Harrison, B. (2002), “Expanding The Control Paradigm Through Excellence in Manufacturing Execution”, “Keynote Speech, AEC/APC Symposium XIV”, Sep. 2002.
[11] ISMI (2002), Equipment Engineering Capabilities Guidelines (Phase 2.5), International SEMATECH Manufacturing Initiative (ISMI), 2002
[12] ITRS (2001), International Technology Roadmap for Semiconductors, 2001 Edition, pp. 285~317.
[13] ITRS (2003), International Technology Roadmap for Semiconductors, 2003 Edition, pp. 431~468.
[14] Laudon, K., & Jane P. Laudon (2004), Management Information Systems – Managing The Digital Firm, 8th edition, Pearson, Prentice Hall, 2004, p. 12.
[15] Liu, M. (2003), “APC from the Foundry Perspective”, “AEC/APC Symposium XV”, Sep. 2003.
[16] Meyer, P. L.(1979), Introductory Probability And Statistical Applications, 2nd edition, Mei Ya Publication Inc, p. 317.
[17] Miller, M. (2002), “AMD’s Vision for 300mm Automation and APC”, “AEC/APC Symposium XIV”, Sep. 2002.
[18] Moyne, J. (2001), Run-to-Run Control in Semiconductor Manufacturing, CRC Press LLC, 2001.
[19] Moyne, J. (2002), “AEC/APC Vision: A Research and Suppliers’ Point of View”,”3rd European AEC/APC Conference”, Apr. 2002.
[20] Pauleen, D., & Rajasingham (2004), “Mediating complexity: Facilitating Relationship Building in Start-up Virtual Teams”, Idea Group Inc, 2004.
[21] Shade, B. (2001), “Increase Productivity Through e-Manufacturing”, Semiconductor International, July, 2001.
[22] Smith, J. et. al. (2004), “Fab Automation with a Practical Real Time Multivariate FDC System”, “AEC/APC Symposium XVI”, Sep. 2004.
[23] Sonderman, T. (2002), “APC as a Competitive Manufacturing Technology: AMD’s Vision for 300mm”, ”3rd European AEC/APC Conference”, Apr. 2002.
[24] Sonderman, T. et. al. (2003), “Advanced Process Control Technology Evolution Requirements for 300mm Manufacturing”, “AEC/APC Symposium XV”, Sep. 2003.
[25] Stanley, T. et. al. (2002), “Cost and Revenue Impact of Advanced Process Control (APC) with an Emphasis on Run-to-Run Control (R2R)”, “AEC/APC Symposium XIV”, Sep. 2002.
[26] Su, Y. H., R. S. Guo and S. C. Chang (2004), “Inter-firm Collaboration Mechanism in Process Development and Product Design Between Foundry and Fabless Design House” “2004 Semiconductor Manufacturing Technology Workshop”, 2004.
[27] TSMC (2001), Foundry Watch, News from TSMC, Oct., 2001, p.6.
[28] TSMC (2002~2004), Foundry Watch, News from TSMC, 2002~2004
[29] Wolhwend, H. (2002), “e-Manufacturing: Needs for the Semiconductor Industry”, “AEC/APC Symposium XIV”, 2002.

Web Site Reference:
[1] ISMI web site for e-Diagnostics Guidebook, v1.7 (2004): http://ismi.sematech.org/emanufacturing/docs/guidebook.pdf
[2] ISMI web site for EEC Guideline, v2.5 (2002): http://ismi.sematech.org/emanufacturing/docs/eecguidebook.pdf
[3] RosettaNet web site for PIP 7C7: Semiconductor Test Data Exchange (2005): http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity[OID[9A6EEA233C5CD411843C00C04F689339]]
[4] TSMC.com (2005): http://www.tsmc.com/english/default.htm
[5] TSMC Online, (2005): http://online.tsmc.com/online/login.jsp
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38423-
dc.description.abstract論文題目:從半導體設備工程系統到工程鏈管理系統的建置與能力模型之研究
作者:陳文耀
指導教授:翁崇雄 博士
本研究採用整合的能力成熟度模型(CMMI)的觀念,對先進製程控制(APC)系統、異常偵測與歸類(FDC)系統、設備工程系統(EES)、電子化製造系統(e-Manufacturing)及工程鏈管理系統(ECMS)提出一個共通的能力模型,這個能力模型可作為衡量這些相關系統建置的指標。根據此能力模型本研究又進一步分別定義出這些系統的架構,亦即相關的系統維度(Dimension)及能力階層(Capability Level)。半導體業界可據此衡量其相關系統建置的程度及擬定系統未來的開發、努力方向。
為建立量化的衡量指標,本研究進一步針對FDC系統定義出「FDC失誤」及「FDC蛋形圖」,據此再推導出FDC系統的量化衡量指標。半導體業界可據此量化的指標來衡量其FDC系統所達到的能力階層及績效。本研究亦進一步提出FDC系統的持續改善循環,根據相關的步驟半導體業界可依此一步一步改善其FDC系統的能力階層及績效。
在從設備工程系統(EES)的建置進展到電子化製造系統(e-Manufacturing)的建置,良率管理系統與設備工程系統的整合是其中的關鍵。因為這兩個系統的整合將可使半導體業者從中得以推知良率的變動情形與製程及設備參數變異的關聯性。有沒有這項能力在半導體業界將會是項關鍵性的差異。
根據相關的文獻探討得知,資訊系統的建置必須與公司的經營策略、技術、組織、及管理方向一致,否則將難以成功。因此,半導體業者不論是在建置設備工程系統,或是在建置電子化製造系統,都必須將這些因素調整成一致,否則無法成功。本研究更進一步推導出工程鏈管理系統的建置,因為牽涉到半導體業界跨公司的整合,將使其建置的困難度遠遠超出公司內設備工程系統的建置與電子化製造系統的建置。
在本研究的最後,針對如何從設備工程系統的建置,進展到電子化製造系統的建置,再進一步進展到工程鏈管理系統的建置,提出了「螺旋式」的建置方式的建議。也就是說,半導體業者在建置設備工程系統、電子化製造系統、及工程鏈管理系統時,除了可以依據各別系統的維度,一階一階的分頭推展之外,這三個系統的建置也可以依據「螺旋式」的建置方式「循序並進」。雖然,從設備工程系統的建置,到電子化製造系統的建置,再進展到工程鏈管理系統的建置,是一趟漫漫的旅程,但最終半導體業界將會協力達成,以實現半導體業界的設計協同作業與工程協同作業的需求。
zh_TW
dc.description.abstractThis research, referred to the concept of CMMI, has defined a simple and generic methodology, Capability Model, for the IC makers to measure the progress from APC, FDC, EES, e-Manufacturing to ECMS systems implementation. Based on the Capability Model, this research has further defined the Framework, Dimensions versus Capability Levels, for APC, FDC, EES, e-Manufacturing and ECMS, respectively. These Capability Models and Frameworks will facilitate the industry to derive the future development directions and approaches for APC, FDC, EES, e-Manufacturing and ECMS implementation.
In this research, the “FDC Errors” and “FDC system Egg Diagram” were defined to measure FDC system performance and implementation capability on a quantifiable basis. In addition, a FDC system continuous improvement cycle was further derived, which clearly defined the approaches for FDC system performance improvement step-by-step on a quantifiable basis.
From EES to e-Manufacturing, the integration of YMS and EES will enable IC makers to discover the know-how of product yield variation versus process and equipment parameters deviation. This capability will be a decisive differentiation among IC makers.
According to the related works study, information system implementation should align with company’s strategy, organization, technology and management approaches. Thus, either EES or e-Manufacturing implementation, the IC makers should align with these factors first. Otherwise, these systems implementation won’t succeed thoroughly. Moreover, in this research, we derived why ECMS implementation will be much more difficult than EES and e-manufacturing implementation. That is because ECMS implementation involves with cross companies’ collaboration. Before ECMS can be successfully implemented, the related companies’ strategy, organization, management, technology and information systems should be aligned first. And, it will be a difficult challenge.
At the end of this research, a spiral implementation approach was proposed for EES, e-Manufacturing and ECMS implementation, i.e. these systems can be level-by-level and concurrently implemented. It is a long way journey, the Odyssey, for the IC makers to migrate from EES, to e-Manufacturing, then to ECMS. However, following the spiral implementation approach, step-by-step and concurrently, the IC makers will realize the Design collaboration and Engineering collaboration among the industry some day in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:33:07Z (GMT). No. of bitstreams: 1
ntu-94-P91747012-1.pdf: 1090566 bytes, checksum: 4372c4e442d5cab49294053856c2cb3c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAcknowledgements……………………………………………………………………….. iii
中文摘要……………………………………………………………………...…………… iv
Thesis Abstract……………………………………………………………………………. vi
Table of Contents………………………………………………………………...……….. viii
List of Tables………………………………………………………………………………. xi
List of Figures………………………………………………………………………...…… xii
Chapter 1 Introduction………………………………………………………………..…. 1
1.1 Research Background…………………………………………………………..… 1
1.1.1 Huge Capital Investment for a New 300mm Semiconductor Fab……..… 1
1.1.2 The Difficult Challenges Associated with Manufacturing IT System
Integration in Semiconductor Industry………………….……………….. 2
1.2 Research Motivation……………………………………………………………… 7
1.2.1 Huge Capital Investment on Process Equipment, But Low Overall
Equipment Effectiveness, Can IT System Improve This Situation?……... 7
1.2.2 Structural Disintegration of Semiconductor Industry Emerges the Needs of Design Collaboration and Engineering Collaboration………………...…. 8
1.3 Research Objectives………………………………………………………………. 9
Chapter 2 Related Works………………………………………………………………… 10
2.1 What Is Equipment Engineering System (EES)?…………………………………. 10
2.2 The Introduction of Equipment Engineering System Applications………………. 11
2.2.1 The Introduction of APC – Run-to-Run (APC-R2R) System…………… 11
2.2.1.1 What Is the Difference Between SPC and APC-R2R?…………….. 11
2.2.1.2 The Benefits of APC-R2R System Implementation…………...…... 13
2.2.2 The Introduction of Fault Detection and Classification (FDC) System… 14
2.3 Information System Literacy……………………………………………………... 16
2.4 Why Design and Engineering Collaboration in Semiconductor Industry?…..…… 18
2.5 The Difficulty and Challenges for Virtual Teams to Execute Design and Engineering Collaboration in Semiconductor Industry………………………………………... 21
Chapter 3 Research Methodology…………………………………………………….…. 24
3.1 Research Scope…………………………………………………………………… 24
3.2 Research Methodology…………………………………………………………… 24
3.3 Research Flow………………………………………………………………….…. 25
3.4 The Summary of Equipment Engineering System (EES)………………………… 27
3.4.1 The Directions of Future EES Development Among IC Makers………... 27
3.4.1 The Dimensions of Advances Process Control (APC) System…………... 29
3.4.3 The Dimensions of Fault Detection & Classification (FDC) System……. 30
3.5 The Summary of e-Manufacturing System……………………………………….. 31
3.6 The Summary of Engineering Chain Management System…………….………… 34
3.6.1 Why Engineering Chain Management System?………...………………. 34
3.6.2 Through ECMS to Realize Design and Engineering Collaboration….…. 34
Chapter 4 Capability Model and the Odyssey from EES to ECMS……………...….… 37
4.1 How to Build up Capability Model for Equipment Engineering System……….... 37
4.2 The Capability Model and Implementation Approach of APC System…………... 39
4.2.1 The Capability Model and Framework of APC System……………….... 39
4.2.2 The Implementation Approach of APC System………………...…….…. 41
4.3 The Capability Model and Implementation Approach of FDC System…………... 44
4.3.1 The Capability Model and Framework of FDC System…..………….…. 44
4.3.2 The Implementation Approach of FDC System……………………….… 44
4.4 The Quantitative Dimensions and Performance Improvement Methodology for FDC System….…....……………………………………………………..…………….. 47
4.4.1 The Definitions of FDC System Errors…..……………………….…….. 47
4.4.2 The Approaches to Drive FDC System Performance Improvement….…. 48
4.4.2.1 FDC System Egg Diagram…………….…………………………… 48
4.4.2.2 The Definitions of FDC System Key Performance Index (KPI)…... 48
4.4.2.3 The Steps of FDC System Performance Improvement Cycle…..….. 49
4.4.2.4 Illustration of FDC System Performance Improvement by Egg Diagram…………………………………………………………….. 50
4.4.2.5 Continuous Improvement Cycle for FDC System Performance Improvement……………………………………………………….. 53
4.4.2.6 Empirical Study of FDC System Capability on the Quantitative Dimensions………………………………………………………… 53
4.4.2.7 Capability Model of FDC System on the Quantitative Dimensions.. 55
4.4.2.8 The Revised Capability Model of FDC System, with Quantitative Dimensions………………….……………..………………………. 57
4.5 The Capability Model and Implementation Approach for EES……...…………… 59
4.5.1 The Capability Model and Framework of EES……..…………………… 59
4.5.2 The Challenges and Implementation Approach of EES……………..….. 60
4.6 The Journey from EES to e-Manufacturing Implementation…………….....……. 63
4.6.1 Through System Integration of EES and YMS to Enable Knowledge Management……………………………………………………………... 63
4.6.2 The Capability Model & Implementation Approach of e-Manufacturing. 66
4.7 The Road Ahead from e-Manufacturing to ECMS……………………………….. 69
4.7.1 The Challenges of ECMS Implementation………..…………………….. 70
4.7.2 The Capability Model and Framework of ECMS…………..…………… 72
4.7.2.1 ECMS Dimension-2: Collaboration between IC-Makers & Equipment Suppliers……………………………………….…………………… 73
4.7.2.2 ECMS Dimension-3: Collaboration between Design House and WaferFab……….…………………………………………………… 74
4.7.2.3 ECMS Dimension-4: Collaboration between Wafer Fab and Testing / Assembly House…………………...……………..………………… 74
4.8 Case Study: Capability Evaluation of TSMC on ECMS Dimension-3.……...…... 76
4.8.1 Through “e-Business Collaboration” to Realize “Virtue Fab”………….. 76
4.8.2 The Practice of TSMC on Design/Engineering Collaboration with Design House………………………………………………………………….… 77
4.8.3 Capability Evaluation of TSMC on ECMS Dimension-3……………….. 84
4.9 The Spiral Approach for EES, e-Manufacturing, and ECMS Implementation…… 85
Chapter 5 Conclusions and Recommendations for Future Research……………….… 87
5.1 Conclusions……………………………………………………………………….. 87
5.2 Contributions……………………………………………………………………... 89
5.3 Recommendations for Future Research………………………………………….. 90
References…………………………………………………………………………………. 91
dc.language.isoen
dc.subject能力模型zh_TW
dc.subject良率管理系統zh_TW
dc.subjectFDC蛋形圖zh_TW
dc.subject異常偵測與歸類zh_TW
dc.subject工程協同作業zh_TW
dc.subject工程鏈管理系統zh_TW
dc.subject電子化製造系統zh_TW
dc.subject設備工程系統zh_TW
dc.subject設計協同作業zh_TW
dc.subject先進製程控制zh_TW
dc.subjectFDC Egg Diagramen
dc.subjectEngineering Collaborationen
dc.subjectFDCen
dc.subjectEngineering Chain Management System (ECMS)en
dc.subjecte-Manufacturingen
dc.subjectEESen
dc.subjectDesign Collaborationen
dc.subjectCapability Modelen
dc.subjectAPCen
dc.subjectYield Management System (YMS)en
dc.title從半導體設備工程系統到工程鏈管理系統的建置與能力模型之研究zh_TW
dc.titleThe Research of Capability Model and Implementation Approach from Equipment Engineering System to Engineering Chain Management Systemen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔣明晃(David Chiang),陳靜枝(C. C. Chern)
dc.subject.keyword先進製程控制,能力模型,設計協同作業,設備工程系統,電子化製造系統,工程鏈管理系統,工程協同作業,異常偵測與歸類,FDC蛋形圖,良率管理系統,zh_TW
dc.subject.keywordAPC,Capability Model,Design Collaboration,EES,e-Manufacturing,Engineering Chain Management System (ECMS),Engineering Collaboration,FDC,FDC Egg Diagram,Yield Management System (YMS),en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2005-07-11
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理組zh_TW
顯示於系所單位:資訊管理組

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved