請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3840完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 逄愛君(Ai-Chun Pang) | |
| dc.contributor.author | Yu-Hsuan Chen | en |
| dc.contributor.author | 陳育旋 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:37:24Z | - |
| dc.date.available | 2016-09-20 | |
| dc.date.available | 2021-05-13T08:37:24Z | - |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-28 | |
| dc.identifier.citation | [1] Andrea Zanella, Nicola Bui, Angelo Castellani, and Lorenzo Vangelista amd Michele Zorzi. Internet of things for smart cities. IEEE Internet of Things Journal,
1(1):22–32, 2014. [2] Winston K. G. Seah, Zhi Ang Eu, and Hwee-Pink Tan. Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) - Survey and Challenges. In Proc. of the 1st International Conference on Wireless, pages 1–5, 2009. [3] Z. Eu, H. Tan, and W. Seah. Design and performance analysis of MAC schemes for Wireless Sensor Networks Powered by Ambient Energy Harvesting. Ad Hoc Networks, 9(3):300–323, 2011. [4] Fabio Iannello, Osvaldo Simeone, and Umberto Spagnolini. Medium Access Control Protocols for Wireless Sensor Networks with Energy Harvesting. IEEE Transactions on Communications, 60(5):1381 – 1389, 2012. [5] T.R. Park, T. H. Choi, S. Choi, and W. H. Kwon. Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. Electronics Letters, 41(18): 1017–1019, 2005. [6] Jelena Miˇsić, Vojislav B. Miˇsić, and Shairmina Shafi. Performance of a beacon enabled IEEE 802.15.4 cluster with downlink and uplink traffic. IEEE Transactions on Parallel and Distributed Systems, 17(4):361–376, 2006. [7] S. Pollin, M. Ergen, S. Ergen, B. Bougard, L. Der Perre, I. Moerman, A. Bahai, P. Varaiya, and F. Catthoor. Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. IEEE Transactions on Wireless Communications,7(9):3359 – 3371, 2008. [8] P. Park, P. Di Marco, P. Soldati, C. Fischione, and K.H. Johansson. A generalized Markov chain model for effective analysis of slotted IEEE 802.15.4. In Proc. of IEEE 6th International Conference on Mobile Adhoc and Sensor Systems (MASS),pages 130–139, Macau, 12-15 Oct 2009. [9] Pangun Park, Carlo Fischione, and Karl Henrik Johansson. Modeling and Stability Analysis of Hybrid Multiple Access in the IEEE 802.15.4 Protocol. ACM Transactions on Sensor Networks, 9(2), 2013. [10] Giuseppe Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Communications, 18(3):535 – 547, 2000. [11] Jing Lei, Roy Yates, and Larry Greenstein. A Generic Model for Optimizing Single- Hop Transmission Policy of Replenishable Sensors. IEEE Transactions on Wireless Communications, 8(2), 2009. [12] Chin Keong Ho, Pham Dang Khoa, and Pang Chin Ming. Markovian Models for Harvested Energy in Wireless Communications. In Proc. of IEEE International Conference on Communication Systems (ICCS), pages 311–315, 2010. [13] Ger Yang, Guan-Yu Lin, and Hung-Yu Wei. Markov Chain Performance Model for IEEE 802.11 Devices with Energy Harvesting Source. In Proc. of Global Communications Conference(GLOBECOM), pages 5212–5217, 2012. [14] Nga Dang, Roberto Valentini, Eli Bozorgzadeh, Marco Levorato, and Nalini Venkatasubramanian. A Unified Stochastic Model for Energy Management in Solar-Powered Embedded Systems. In Proc. of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 621 – 626, 2015. [15] IEEE Std 802.15.4-2011, September, Part 15.4: Low Rate Wireless Personal Area Networks (LR-WPANs). IEEE, 2011. [16] A. Koubaa, M. Alves, and E. Tovar. A comprehensive simulation study of slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks. In Proc. of IEEE International Workshop on Factory Communication Systems, pages 183–192, 28-30 June 2006. [17] Dan M. Frangopol. Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Structure and Infrastructure Engineering, 7(6):389–413, 2011. [18] Yangbo Chen, Chin-An Tan, Maria Q. Feng, and Yoshio Fukuda. A video assisted approach for structural health monitoring of highway bridges under normal traffic. Proc. SPIE, 6174:1–18, 2006. [19] Ery Arias-Castro, Jan Kleissl, and Matthew Lave. A Poisson model for anisotropic solar ramp rate correlations . Solar Energy, 101:192–202, 2014. [20] Long Ren, Renwen Chen, Huakang Xia, and Xiaoxiao Zhang. Energy harvesting performance of a broadband electromagnetic vibration energy harvester for powering industrial wireless sensor networks. proc. SPIE, 9799:1 11, 2016. [21] Jinchi Han, Jun Hu, Yang Yang, Zhongxu Wang, Shan X. Wang, and Jinliang He. A nonintrusive power supply design forself-powered sensor networks in the smartgrid by scavenging energy from ac power line. IEEE Transactions on Industrial Electronics, 62(7):4398–4407, 2015. [22] Post, E. Rehmi, and Kit Waal. Electrostatic power harvesting for material computing.Personal and Ubiquitous Computing, 15(2):115–121, 2011. [23] Vladimir Leonov. Thermoelectric energy harvesting of human bodyheat for wearable sensors. IEEE Sensors Journal, 13(6):2284–2291, 2013. [24] NIWA. Solarview. [25] Jung Chang Yong, Hwang Ho Young, Sung Dan Keun, and Hwang Gang Uk. Enhanced Markov Chain Model and Throughput Analysis of the Slotted CSMACA for IEEE 802.15.4 Under Unsaturated Traffic Conditions. IEEE Transactions on Vehicular Technology, 58(1):473 – 478, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3840 | - |
| dc.description.abstract | 在物聯網中,裝置的大小限制了本身能夠儲存的電量,使得網路的
壽命受到影響,而藉由能量收集,讓裝置能夠自行充電,被視為一種 延長網路壽命的方式。但是因為環境的影響,有別於以往用電池供電 的方式,能量收集的電量大小會隨著時間變動,進而影響無線感測網 路的運作,因此,以能量收集為供電方式的無線感測網路的效能需要 被重新評估。在這篇論文中,我們嘗試用模型去描述使用能量採集來 充電、並採用IEEE 802.15.4 標準下的分槽式載波感測多重存取/ 碰撞 避免(CSMA/CA) 為MAC 協定的裝置行為,並以平均充電時間、延遲 和吞吐率做為效能評估的標準,我們提出的馬可夫模型成功的描述了 通道競爭和充電的過程,並且比較使用不同的能量收集技術(例如太陽 能、振動能量收集等) 的裝置效能。模型會藉由模擬進行驗證,而分析 出的吞吐率結果和模擬結果的誤差不會超過6%。 | zh_TW |
| dc.description.abstract | In the Internet of Things (IoT), the size constraint of those small and embedded devices limits the network lifetime because limited energy can be stored on these devices. In recent years, energy harvesting technology has attracted increasing attention, due to its ability to extend the network lifetime significantly. However, the performance of IoT devices powered by energy harvesting sources has not been fully analyzed and understood. In this paper, we model the energy harvesting process in IoT devices using slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA /CA) mechanism of IEEE 802.15.4 standard, and analyze the performance in terms of charging time, throughput and delay. Our new model successfully integrates the energy harvesting process and binary backoff process through a unified Markov chain model. Finally, the new model is validated by simulation and the throughput errors between simulation and analytical model are no more than 6%. We demonstrate the application of the model with different energy harvesting rate corresponding to different sources such as solar and vibration energy harvesters. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:37:24Z (GMT). No. of bitstreams: 1 ntu-105-R03922015-1.pdf: 871272 bytes, checksum: 1a132c3795b9599d02d34ec7df4c8f92 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
致謝 iii 中文摘要 iv Abstract v Contents vi List of Figures viii List of Tables ix 1 Introduction 1 2 Related Work 4 2.1 IEEE 802.15.4 protocol 4 2.2 Energy Harvesting process 4 3 Overview of IEEE 802.15.4 Slotted CSMA/CA 6 4 System Model 8 4.1 Energy harvesting process 8 4.2 State space of the Markov model 10 4.3 State transitions 12 4.4 Stationary distribution 14 4.5 Expression of Charging Time Ratio, Throughput and Delay 20 5 Model Validation 22 5.1 Simulation Setup 22 5.1.1 Expression of Charging Time Ratio, Throughput and Delay 22 5.1.2 Setting of the energy harvesting rate 23 5.2 Model Validation and Performance Analysis 25 5.2.1 Charging Time Ratio 25 5.2.2 Throughput 27 5.2.3 Delay 29 5.2.4 Emin and Emax 32 6 Conclusions 35 Bibliography 36 | |
| dc.language.iso | en | |
| dc.subject | 物聯網 | zh_TW |
| dc.subject | 能量收集 | zh_TW |
| dc.subject | 馬可夫模型 | zh_TW |
| dc.subject | 分槽式載波感測多重存取/ 碰撞避免 | zh_TW |
| dc.subject | IEEE 802.15.4 標準 | zh_TW |
| dc.subject | Internet of Things | en |
| dc.subject | Markov chain | en |
| dc.subject | CSMA/CA | en |
| dc.subject | IEEE 802.15.4 standard | en |
| dc.subject | Energy Harvesting | en |
| dc.title | IEEE 802.15.4協定下能量收集無線感測網路之效能分析 | zh_TW |
| dc.title | Modeling and Analysis of Energy Harvesting Sensor Nodes in IEEE 802.15.4 Protocols | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡孟勳(Meng-Hsun Tsai),余亞儒(Ya-Ju Yu) | |
| dc.subject.keyword | 物聯網,能量收集,IEEE 802.15.4 標準,分槽式載波感測多重存取/ 碰撞避免,馬可夫模型, | zh_TW |
| dc.subject.keyword | Internet of Things,Energy Harvesting,IEEE 802.15.4 standard,CSMA/CA,Markov chain, | en |
| dc.relation.page | 38 | |
| dc.identifier.doi | 10.6342/NTU201601518 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 850.85 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
