請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38392完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳國在(Kuo-Tsai Chen) | |
| dc.contributor.author | Ta-Chun Lin | en |
| dc.contributor.author | 林大鈞 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:32:16Z | - |
| dc.date.available | 2007-07-12 | |
| dc.date.copyright | 2005-07-12 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-11 | |
| dc.identifier.citation | [1] K. Murano, S. Unagami, and F. Amano,〝Echo Cancellation and Applications,〞 IEEE Communication Magazine, Vol.28, No.1, pp.49-55, Jan 1990.
[2] Saeed V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction, 2nd Ed., John Wiley & Sons, New York, 2000. [3] Niek A. M. Verhoeckx, et al.〝Digital Echo Cancellation for Baseband Data Transmission,〞IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.ASSP-27, No.6, pp.768-781, Dec 1979. [4] Nils Holte and Steinar Stueflotten,〝A New Digital Echo Canceller for Two-Wire Subscriber Lines,〞IEEE Transactions on Communications, Vol.COM-29, No.11, pp.1573-1581, Nov 1981. [5] O. Agazzi, D. A. Hodges, and D. G. Messerschmitt, 〝Non-linear Echo Cancellation of Data Signals,〞IEEE Transactions on Communications, Vol.COM-30, No.11, pp.2421-2433, Nov 1982. [6] P. Howells,〝Imtermidiate Frequency Side-Lobe Canceller,〞U.S. Patent 3,202,990 , Aug. 24 , 1965. [7] B. Widrow and M. E. Hoff,〝Adaptive switching circuits,〞IRE WESCON Conv. Rec., Pt.4, pp.96-104, 1960. [8] B. Widrow, et al.,〝Adaptive Noise Canceling : Principles and Applications,〞Proceedings of the IEEE, Vol.63, pp.1692-1716, Dec 1975. [9] Sen M. Kuo and Dennis R. Morgan, Active Noise Control Systems : Algorithms and DSP Implementations, John Wiley & Sons, New York, 1996. [10] M. M. Sondhi and A. J. Presti,〝A Self-Adaptive Echo Canceller,〞Bell System Technical Journal, Vol.45, pp.1851-1854, 1966. [11] M. M. Sondhi,〝An Adaptive Echo Canceller,〞Bell System Technical Journal, Vol.46, pp.497-511, 1967. [12] M. M. Sondhi and D. A. Berkley,〝Silencing Echoes on the Telephone Network,〞Proceedings of the IEEE, Vol.68, No.8, pp.948-963, Aug 1980. [13] D. Degryse, F. Druilhe, and A. Gilloire,〝A Multi-Processor Structure for Signal Processing Application to Acoustic Echo Cancellation,〞Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '85, Vol.10, pp. 1613-1616, Apr 1985. [14] S. M. Kuo and H. Zhao,〝A Real-Time Acoustic Echo Cancellation System,〞IEEE International Conference on Systems Engineering 1990, pp.168-171, Aug 1990. [15] E. Hansler ,〝The hands-free telephone problem – An annotated bibliography〞, Signal Processing, Vol.27, No.3, pp.259-271, 1992. [16] C. W. K. Gritton and D. W. Lin,〝Echo Cancellation Algorithms,〞 IEEE ASSP Magazine, Vol.1, Iss.2, pp.30-38, Apr 1984. [17] P. Heitkamper,〝An Adaptation Control for Acoustic Echo Cancellers,〞 IEEE Signal Processing Letters, Vol.4, No.6, pp.170-172, Jun 1997. [18] A. P. Liavas and P. A. Regalia, 〝Acoustic Echo Cancellation: Do IIR Models Offer Better Modeling Capabilities than Their FIR Counterparts?〞 IEEE Transactions on Signal Processing, Vol. 46, No.9, pp.2499-2504, Sep 1998. [19] Jianfeng Liu,〝A Novel Adaptation Scheme in The NLMS Algorithm for Echo Cancellation,〞IEEE Signal Processing Letters, Vol.8, No.1, pp.20-22, Jan 2001. [20] M. M. Sondhi , D. R. Morgan and J. L. Hall ,〝Stereophonic Acoustic Echo Cancellation – An Overview of Fundamental Problem,〞IEEE Signal Processing Letters, Vol.2, No.8, pp.148-151, Aug 1995. [21] J. Benesty, F. Amand, A. Gilloire, and Y. Grenier,〝Adaptive Filtering Algorithms for Stereophonic Acoustic Echo Cancellation,〞IEEE Proceedings ICASSP-1995, pp.3099-3102, 1995. [22] T. Gansler and J. Benesty, 〝New Insights Into the Stereophonic Acoustic Echo Cancellation Problem and an Adaptive Nonlinearity Solution,〞IEEE Transactions on Speech and Audio Processing, Vol.10, No.5, pp.257-267, Jul 2002. [23] Stefan Gustafsson, Rainer Martin, and Peter Jax,〝A Psychoacoustic Approach to Combined Acoustic Echo Cancellation and Noise Reduction,〞IEEE Transactions on Speech and Audio Processing, Vol.10, No.5, pp.245-256, Jul 2002. [24] C. Breining, et al.,〝Acoustic echo control. An application of very-high-order adaptive filters,〞IEEE Signal Processing Magazine, Vol.16, No.4, pp.42-69, Jul 1999. [25] A. Mader, H. Puder, and G. U. Schmidt,〝Step-Size Control for Acoustic Echo Cancellation Filters - An Overview,〞Signal Processing, Vol.80, pp.1697-1719, Feb 2000. [26] Simon Haykin , Adaptive Filter Theory , 4th Ed. , Prentice-Hall , New Jersey , 2002. [27] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab, Signals & Systems, 2nd Ed., Prentice-Hall, 1997. [28] Sanjit K. Mitra, Digital Signal Processing – A Computer-Based Approach, 2nd Ed., McGraw-Hill, 2002. [29] Bernard Widrow, Samuel D. Stearns, Adaptive Signal Processing , Prentice-Hall , New Jersey, 1985. [30] R. R. Bitmead and B. D. O. Anderson,〝Performance of Adaptive Estimation Algorithms in Dependent Random Environments,〞IEEE Transactions on Automatic Control, Vol. AC-25, No.4, pp.788-794, Aug 1980. [31] F. F. Yassa ,〝Optimality in the choise of convergence factor for gradient based adaptive algorithms,〞IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.35, No.1, pp.48-59, Jan 1987. [32] D. T. M. Slock,〝On the Convergence Behavior of the LMS and the Normalized LMS Algorithms,〞IEEE Transactions on Signal Processing, Vol.41, No.9, pp. 2811-2825, Sep 1993. [33] M. Rupp and R. Frenzel,〝Analysis of LMS and NLMS Algorithms with Delayed Coefficient Update Under the Presence of Spherically Invariant Processes,〞IEEE Transactions on Signal Processing, Vol.42, No.3, pp.668-672, Mar 1994. [34] Leo L. Beranek, Acoustical Measurements, Rev. Ed., Acoustical Society of America, 1993 [35] Jr. Peyton Z. Peebles, Probability, Random Variables, and Random signal Principles, 4th Ed., McGraw-Hill, 2001. [36] Charles E. Wilson, Noise Control – measurement, analysis and control of sound and vibration, Re. Ed., Krieger, 1994. [37] J. Chao and S. Tsujii,〝A New Configuration for Echo Canceller Adaptable During Double Talk Periods,〞IEEE Transactions on Communications, Vol.37, No.9, pp.969-974, Sep 1989. [38] J. C. Jenq and S. F. Hsieh,〝Decision of double-talk and time-variant echo path for acoustic echo cancellation,〞IEEE Signal Processing Letters, Vol.10, No.11, pp.317-319, Nov 2003. [39] A. Guerin, G. Faucon, and R. L. Bouquin-Jeannes,〝Nonlinear Acoustic Echo Cancellation Based on Volterra Filters,〞IEEE Transactions on Speech and Audio Processing, Vol.11, No.6, pp.672-683, Nov 2003. [40] C. Bao, P. Sas, and H. V. Brussel,〝Adaptive Active Control of Noise In 3-D Reverberant Enclosures,〞Journal of Sound and Vibration, Vol.161, Iss.3, pp.501-514, 1993. [41] A. Sugiyama, Y. Joncour, and A. Hirano,〝A Stereo Echo Canceler with Correct Echo-Path Identification Based on an Input-Sliding Technique,〞IEEE Transactions on Signal Processing, Vol. 49, No.11, pp.2577-2587, Nov 2001. [42] H. Yasukawa and S. Shimada,〝An Acoustic Echo Canceller Using Subband Sampling and Decorrelation Methods,〞IEEE Transactions on Signal Processing, Vol.41, No.2, pp.926-930, Feb 1993. [43] S. Makino and Y. Kaneda, 'Acoustic echo canceller algorithm based on the variation characteristics of a room impulse response,' International Conference on Acoustics, Speech, and Signal Processing, 1990. ICASSP-90, Vol.2, pp.1133-1136, Apr 1990. [44] Daniel R. Raichel, The Science and Applications of Acoustics, Springer-Verlag, New York, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38392 | - |
| dc.description.abstract | 聲學迴音干擾問題,發生於通訊產品與音訊系統,舉凡有線話機、行動電話、免持聽筒、音響擴音器、助聽器、耳機麥克風…等等,其中皆包含兩大重要聲學元件:揚聲器與麥克風。當此二元件共同置於封閉空間或距離相近時,聲波能量足以由揚聲器傳入麥克風,所產生之聲學迴音將影響通訊品質,甚至造成聽覺上的不適。
本文根據適應性主動控制理論,與數位信號處理技術,採用有限脈衝響應(FIR)數位濾波器為系統架構,並以Normalized LMS演算法進行系統最佳化運算,利用類比/數位–數位/類比信號擷取轉換裝置,結合個人電腦為研發平台,建立一聲學迴音消除系統。 聲學迴音消除實驗,以單頻信號與隨機噪音信號輸入,於壁面反射性高之密閉迴響環境進行測試,分析比較不同頻率、參數設定與運算方式,對聲學迴音消除成效之影響,藉以研究其系統性質。 依實驗結果顯示,單頻信號依頻率高低不同,平均ERLE可達20至50 dB,功率頻譜迴音衰減量可達60 dB以上;隨機噪音依頻帶高低,平均ERLE達約2至10 dB,功率頻譜迴音衰減量約為3至12 dB;固定頻寬之隨機噪音,平均ERLE與功率頻譜迴音衰減量,皆可達約10至15 dB。 | zh_TW |
| dc.description.abstract | The interrupt resulting from the acoustic echo exist in some situations dealing with the communication products and audio systems such as telephone, cellphone, hand–free telephone, stereos, hearing aids and headset etc. Among those products, two important acoustic components such as loudspeaker and microphone are included. When the two acoustic components as described are placed in an enclosure or placed too close to avoid the propagation of acoustic energy from speaker to microphone, the acoustic echo to be produced will influence the communication quality, or further causes an uncomfortable hearing to happen.
Upon the adaptively active control theory and the digital signal processing technique, this study adopts the finite impulse response digital filter as the system structure. Regarding to the optimum operation for the control system, a normalized least-mean-square algorithm is selected as well. To further set up the acoustic-echo cancellation system for this study, the combination of an A/D-D/A converter data acquisitive equipment with some personal computer is used as the required platform. For the experiment of the acoustic-echo cancellation, an enclosure with highly reflective walls is used as the experimental site, and the selected input signals are both of pure-tones and random. The system performances are identified by comparing the methods to set up the parameter of system, its operation performance and their influence on the effectiveness of echo cancellation for various frequencies. Experimental results show that the averaged ERLE by 20 to 50 decibels for various frequencies from low to high pure-tone sounds are reached. The reductions of echo power spectrum by more than 60 decibels are reached. As regards to the case of randomly acoustic echo, either the averaged ERLE by 2 to 10 dB or the reduction of power spectrum by 3 to 10 dB is achieved. Moreover, for the case of narrow-band of acoustic echo, the reduction by more than 10 to 15 dB of averaged ERLE and power spectrum are achieved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:32:16Z (GMT). No. of bitstreams: 1 ntu-94-R91525005-1.pdf: 2224725 bytes, checksum: 1922630663d8c96d9cd6d636898f2341 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘 要 I
ABSTRACT II 目 錄 IV 圖 目 錄 VI 表 目 錄 VIII 簡稱術語對照表 IX 第一章 緒論 - 1 - 1.1 研究背景 - 1 - 1.2 文獻回顧 - 4 - 1.3 研究目的及方法 - 5 - 第二章 聲學迴音消除理論 - 6 - 2.1 聲學迴音消除原理 - 6 - 2.2 信號量測與數位化 - 8 - 2.3 數位濾波器 - 11 - 2.4 適應性控制系統架構 - 13 - 2.5 適應性演算法 - 15 - 第三章 聲學迴音消除系統及實驗 - 21 - 3.1 實驗環境 - 21 - 3.2 儀具與實驗設備簡介 - 23 - 3.3 聲學迴音消除實驗程序 - 26 - 3.4 迴音消除成效評量 - 30 - 3.5 室內環境響應 - 32 - 3.6 離線處理與線上控制 - 36 - 第四章 實驗結果與討論 - 39 - 4.1 離線處理消除結果 - 40 - 4.1.1 單頻信號實驗結果 - 40 - 4.1.2 帶寬噪音實驗結果 - 50 - 4.1.3 窄頻隨機噪音實驗結果 - 60 - 4.2 線上控制消除結果 - 70 - 4.2.1 單頻信號實驗結果 - 70 - 4.2.2 帶寬噪音實驗結果 - 80 - 4.2.3 窄頻隨機噪音實驗結果 - 90 - 4.3 雙邊對話效應 - 100 - 4.4 討論 - 102 - 第五章 結論 - 105 - 5.1 論文總結 - 105 - 5.2 未來展望 - 107 - 參考文獻 - 108 - | |
| dc.language.iso | zh-TW | |
| dc.subject | 聲學迴音消除 | zh_TW |
| dc.subject | 適應性控制 | zh_TW |
| dc.subject | Acoustic echo cancellation | en |
| dc.subject | Adaptive control | en |
| dc.title | 室內聲學迴音消除之研究 | zh_TW |
| dc.title | The Study of Acoustic Echo Cancellation in Reverberant Enclosure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 柯文俊,劉雲輝 | |
| dc.subject.keyword | 聲學迴音消除,適應性控制, | zh_TW |
| dc.subject.keyword | Acoustic echo cancellation,Adaptive control, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
