Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38334
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor萬本儒(Ben-Zu Wan)
dc.contributor.authorYu-Wei Taien
dc.contributor.author戴煜暐zh_TW
dc.date.accessioned2021-06-13T16:30:43Z-
dc.date.available2005-07-22
dc.date.copyright2005-07-22
dc.date.issued2005
dc.date.submitted2005-07-12
dc.identifier.citation1.M. Chanon, Homogeneous Photocatalysis, ch. 8, John & Wiley, 1997.
2.R. E. Bird, R. L. Hulstrom and L. J. Lewis, Solar Energy, 30, pp. 563-573, 1983.
3.M. L. Buhl, R. E. Bird, R. V. Bilchak, J. S. Connolly and J. R. Bolton, Solar energy, 32, pp.75-84, 1984.
4.M. E. Nell and A. M. Barnett, IEEE Trans. on Electron Devices, ED-34, pp.257-265, 1987.
5.J. R. Bolton, Solar Energy, 57, pp.37-50, 1996.
6.C. H. Henry, J. Appl. Phys., 51, pp.4494-4499, 1980.
7.J. R. Bolton, S. J. Strickler and J. S. Connolly, Nature, 316, pp.495-500, 1985.
8.M. D. Archer and J. R. Bolton, J. Phys. Chem., 94, pp.8028-8036, 1990.
9.S. Ikeda, M. Hara, J. N. Kondo, K. Domen, H. Takahashi, T. Okubo and M. Kakihana, Chem. Mater., 10, p.72, 1998.
10.A. Fujishima and K. Honda, Nature, 238, p.37, 1972.
11.K. Domen, A. Kudo and T. Onishi, J. Catal., 102, p.92, 1986.
12.K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, J. Phys. Chem., 90, p.292, 1986.
13.A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika and T. Onishi, J. Catal., 111, p.67, 1988.
14.A. Kudo, K. Sayama, A. Tanaka, K. Asakura, K. Domen, K. Maruya and T. Onishi, J. Catal., 120, p.337, 1989.
15.K. Sayama, A. Tanaka, K. Domen, K. Maruya and T. Onishi, J. Phys. Chem., 95, p.1345, 1991.
16.K. Sayama, H. Arakawa and K. Domen, Catalysis Today, 28, p.175, 1996.
17.S. Ikeda, A. Tanaka, K. Shinohara, M. Hara, J. N. Kondo, K. Maruya and K. Domen, Microporous Materials, 9, p.253, 1997.
18.K. Sayama, K. Yase, H. Arakawa, K. Asakura, A. Tanaka, K. Domen and T. Onishi, J. Photochem. Photobiol. A:Chem., 114, p.125, 1998.
19.M. Kohno, S. Ogura and Y. Inoue, J. Mater. Chem., 6, p.1921, 1996.
20.M. Kohno, T. Kaneko, S. Ogura, K. Sato and Y. Inoue, J. Chem. Soc. Faraday Trans., 94, p.89, 1998.
21.S. Ogura, M. Kohno, K. Sato and Y. Inoue, Appl. Surf. Sci., 121, p.521, 1997.
22.T. Takata, K. Shinohara, M. Hara, J. N. Kondo and K. Domen, 10 J. Photochem. Photobiol. A:Chem., 6, p.45, 1997.
23.K. Sayama, and H. Arakawa, J. Photochem. Photobiol. A:Chem., 77, p.243, 1994.
24.K. Sayama, and H. Arakawa, J. Photochem. Photobiol. A:Chem., 94, p.67, 1996.
25.A. Kudo, Catal. Surveys from Asia, 7, p.31, 2003.
26.T. Takata, A. Takata, M. Hara, J. N. Kondo and K. Domen, Catal. Today, 44, p.17, 1998.
27.M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett., 16, p.405, 1987.
28.M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal., 115, p.301, 1989.
29.M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal., 144, p.175, 1993.
30.J. -N. Lin, J. –H. Chen, C. -Y. Hsiao, Y. -M. Kang and B. -Z. Wan, Appl. Catal. B: Enviorn., 36, p.19, 2002.
31.J.-N. Lin and B.-Z. Wan, Appl. Catal. B: Enviorn., 41, p.83, 2003.
32.Y.-J. Chen and C.-T. Yeh, J. Catal., 200, p59, 2001.
33.H.-S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung and M. C. Kung, J. Catal., 210, p.375, 2002.
34.M. Haruta and M. Date, Appl. Catal. A: General, 222, p.427, 2001.
35.G. C. Bond, and D. T. Thompson, Catal. Rev.-Sci. Eng., 41, p.319, 1999.
36.Y.-M. Kang and B.-Z. Wan, Catal. Today, 35, p.379, 1997.
37.S. Link, Z. L. Wang and M. A. EI-Sayed, J. Phys. Chem. B., 103, p.3529, 1999.
38.H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd, John & Wiley, 1974.
39.P. Kubelka and F. Munk, Z. Tech. Phys., 12, p.593, 1931.
40.Y.-M. Kang and B.-Z. Wan, Appl. Catal. A: General, 128, p.53, 1995.
41.S. D. Lin, M. Bollinger and M. A. Vannice, Catal. Lett., 17, p.245, 1993.
42.J.-S. Chen, Reduction of CO2 in the Daily Life and Study of Layered Titanium Catalysts for Photo-Catalytic Water Decomposition, Master Thesis, National Taiwan University, 2000.
43.O. Khaselev, A. Bansal and J. A. Turner, Int. J. Hydrogen Energy, 26, pp.127-132, 2001.
44.S. Licht, J. Phys. Chem. B, 105, pp.6281-6294, 2001.
45.S. M. Sze, Semiconductor devices physics and Technology, 3rd, John Wiley & Sons, 2001.
46.V. L. Rideout, Solid State Electronics, 18, pp.541-550, 1975.
47.D. R. Lide, CRC Handbook of Chemistry and Physics, 80th, CRC press, 2000.
48.J. S. Connolly, Photochemical Conversion and Storage of Solar Energy, New York, 1981.
49.D. A. Tryk, A. Fujishima and K. Honda, Electrochim. Acta, 45, pp.2363-2376, 2000.
50.S. Licht, O. Khaselev, P. A. Ramakrishnan, T. Soga and M. Umeno, J. Phys. Chem. B, 102, pp.2536-2545, 1998.
51.S. Licht, O. Khaselev, P. A. Ramakrishnan, T. Soga and M. Umeno, J. Phys. Chem. B, 102, pp.2546-2554, 1998.
52.M. Yang, T. Soga, T. Jimbo and M. Umeno, Jpn. J. Appl. Phys., 33, pp.6605-6610, 1994.
53.S. S. Kocha, D. Montgomery, M. W. Peterson and J. A. Turner, Solar Energy Mater. and Solar Cells, 52, pp.389-397, 1998.
54.O. Khaselev and J. A. Turner, Science, 280, pp.425-427, 1998.
55.M. M. Khader and M. M. Saleh, Thin Solid Films, 349, pp. 165-170, 1999.
56.X. Gao, S. Kocha, A. J. Frank and J. A. Turner, Int. J. Hydrogen Energy, 24, pp.319-325, 1999.
57.W. Gao, S. H. Lee, J. Bullock, Y. Xu, D. K. Benson, S. Morrison and H. M. Branz, Solar Energy Mater. and Solar Cells, 59, pp.243-254, 1999.
58.S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, J. Phys. Chem. B, 104, pp.8920-8924, 2000.
59.S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, Int. J. Hydrogen Energy, 26, p.653, 2001.
60.K. Singh and S. S. D. Mishra, Solar Energy Mater. and Solar Cells, 71, pp.115-129, 2002.
61.Y. Matsumoto, J. solid state chem., 126, p.227, 1996.
62.S. U. M. Khan and J. Akikusa, J. Phys. Chem. B, 103, p.7184, 1999.
63.J. E. Turner, M. Hendewerk, J. Parmeter, D. Neiman and G. A. Somorjai, J. Electrochem. Soc., 131, p.177, 1984.
64.A. H. A. Tinnemans, J. P. M. Koster, A. Makor and J. Schoonman, Ber. Bunsenges. Phys. Chem., 90, p.390, 1986.
65.E. L. Miller, R. E. Rocheleau and X. M. Deng, Int. J. Hydrogen Energy, 28, pp.615-623, 2003.
66.E. L. Miller, R. E. Rocheleau and S. Khan, Int. J. Hydrogen Energy, 29, pp.907-914, 2004.
67.M. Gratzel, Energy Resources through Photochemistry and Catalysis, Academic Press, p.335, 1983.
68.D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys., 25, p.676, 1954.
69.U. Bjorksten, J. Moser and M. Gratzel, Chem. Mater., 6, pp.858-863, 1994.
70.S. Xue, W. Qusi-Benomar and R. A. Lessard, Thin Solid Films, 250, pp.194-201, 1994.
71.H. –S. Sun, C. Cantalini, M. Faccio and M. Pelino, Thin Solid Films, 269, pp.97-101, 1995.
72.L. Armelao, G. Depaoli, A. Sandon, S. Daolio and E. Tondello, Mater. Sci. Forum, 195, pp.55-60, 1995.
73.Q. W. Chen, Y. T. Qian, H. Qian, Z. Y. Chen, W. B. Wu and Y. H. Zhang, Mater. Research Bull., 30, pp.443-446, 1995.
74.M. S. Selim, A. Sawaby and Z. S. El Mandouh, Mater. Research Bull., 35, pp. 2123-2133, 2000.
75.Q. W. Chen, X. Li and Y. Zhang, Chem. Phys. Lett., 343, pp. 507-512, 2001.
76.S. S. Kulkarni and C. D. Lokhande, Mater. Chem. Phys., 82, pp. 151-156, 2003.
77.P. Schmuki, S. Virtanen, A. J. Davenport and C. M. Vitus, J. Electrochem. Soc., 143, pp.574-582, 1996.
78.T. Kosaka, S. Suzuki, M. Saito, Y. Waseda, E. Matsubara, K. Sadamori and E. Aoyagi, Thin Solid Films, 289, pp. 74-78, 1996.
79.D. V. Dimitrov, G. C. Hadjipanayis, V. Papaefthymiou and A. Simopoulos, J. Vac. Sci. Technol. A, 15, pp1473-1477, 1997.
80.T. Stenberg, P. Vuoristo, J. Keranen, T. Mantyla, M. Buchler, S. Virtanen, P. Schmuki and H. Bohni, Thin Solid Films, 312, pp.46-60, 1998.
81.S. J. Doh, J. H. Je and T. S. Cho, J. Crystal Growth, 240, pp. 355-362, 2002.
82.K. Itoh and J. O’M. Bockris, J. Electrochem. Soc., 131, pp.1266-1271, 1984.
83.I. K. Kim, Y. G. Kim and T. Y. Park, Analytical Sci., 7, pp.1693-1696, 1991.
84.M. Gratzel and R. K. Thampi, European Patent EP 1175938A1, 2002.
85.C. J. Sartoretti, M. Ulmann, B. D. Alexander, J. Augustynski and A. Weidenkaff, Chem. Phys. Lett., 376, pp.194-200, 2003.
86.X. –G. Wang, W. Weiss, Sh. K. Shaikhutdinov, M. Ritter, M. Petersen, F. Wangner, R. Schlogl and M. Scheffler, Phys. Review Lett., 81, pp. 1038-1041, 1998.
87.Sh. K. Shaikhutdinov, Y. Joseph, C. Kuhrs, W. Ranke and W. Weiss, Faraday Discuss., 114, pp363-380, 1999.
88.G. Ketteler, W. Weiss, W. Ranke and R. Schlogl, Phys. Chem. Chem. Phys. 3, pp.1114-1122, 2001.
89.Y. J. Kim, Y. Gao and S. A. Chambers, Surf. Sci., 371, pp.358-370, 1997.
90.Y. Gao and S. A. Chambers, J. Crystal Growth, 174, pp.446-454, 1997.
91.J. E. Mahan, Physical Vapor Deposition of Thin Films, John Wiley & Sons, 2000.
92.D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, Blackie Hlashow and London, 1991.
93.R.M. Cornell and U. Schwertmann, The Iron Oxide: Structure, Properties, Reactions, Occurrence and Uses, VCH publishers, 1996.
94.L. V. Bogdandy and H.-J. Engell, The Reduction of Iron Ores : Scientific Basis and Technology, Berlin , 1971.
95.J. K. Leland and A. J. Bard, J. Phys. Chem., 91, pp5076-5083, 1987.
96.M. Kerker, P. Scheiner, D.D. Cooke and J. P. Kratohvil, J. Colloid Interface Sci., 71, pp.176-187, 1979.
97.R. F. G. Gardner, F. Sweett and D. W. Tanner, J. Phys. Chem. Solids, 24, p.1183, 1963.
98.M. P. Dare-Edwards, J. B. Goodenough, A. Hamnelt and P. R. Trevellick, J. Chem. Soc. Faraday Trans. I., 79, pp2027-2041, 1983.
99.C. Leygraf, M. Hendewerk and G. Somorjai, J. Solid State Chem., 48, pp. 357-367, 1983.
100.C. Gleitzer, J. Nowotny and M. Rekas, Appl. Phys. A , 53, pp.310-316, 1991.
101.K. L. hardee and A. J. Bard, J. Electrochem. Soc., 124, pp. 215-224, 1977.
102.R. Shinar and J. H. Kennedy, J. Electrochem. Soc., 130, pp. 392-396, 1983.
103.J. H. Kennedy and M. Anderman, J. Electrochem. Soc., 130, pp. 848-852, 1983.
104.J. H. Kennedy, R. Shinar and J. P. Ziegler, J. Electrochem. Soc., 127, pp. 2307-2309, 1980.
105.C. Leygraf, M. Hendewerk and G. Somorjai, J. Catal., 78, pp. 341-351, 1982.
106.J. H. Kennedy and D. Dünnwald, J. Electrochem. Soc., 130, pp. 2013-2016, 1983.
107.J. E. Turner, M. Hendewerk, J. Parmeter, D. Neiman and G.A. Somorjai, J. Electrochem. Soc., 131, pp.1777-1783, 1984.
108.K. D. Sieber, C. Sanchez, J. E. Turner and G.A. Somorjai, Mat. Res. Bull., 20, pp. 153-162, 1985.
109.J. F. Houlihan, T. Pannaparayil, H. L. Burdette, D. P. Madacsi and R. J. Pollock, Mat. Res. Bull., 20, pp. 163-177, 1985.
110.L. Parent and J. P. Dodelet and S. Dallaire, J. Electrochem. Soc., 134, pp.2226-2233, 1987.
111.J. H. Kennedy and K. W. Frese, Jr., J. Electrochem. Soc., 125, pp. 709-714, 1978.
112.J. H. Kennedy and K. W. Frese, Jr., J. Electrochem. Soc., 125, pp. 723-726, 1978.
113.R. A. Fredlein and A. J. Bard, J. Electrochem. Soc., 126, pp. 1892-1898, 1979.
114.V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, G. M. Stepanyan, J. A. Turner, S. S. Kocha, Electrochim. Acta, 45, pp.1999-2005, 2000.
115.A. H. A. Tinnemans, T. P. M. Koster, D. H. M. W. Thewissen and A. Mackor, Ber. Bunsenges. Phys. Chem., 90, pp. 383-390, 1986.
116.A. H. A. Tinnemans, T. P. M. Koster and A. Mackor, Ber. Bunsenges. Phys. Chem., 90, pp. 390-394, 1986.
117.S. Cai, D. Jiang, T. Lu, R. Tong, M. Zhou and A. Fujishima, Corrosion Sci., 31, pp.733-738, 1990.
118.I. K. Kim, S. I. Jeong, G. S. Oh, C. S. Shin and T. Y. Park, Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, Korea, 1997.
119.S. Cai, D. Jiang, R. Tong, S. Jin, J. Zhang and A. Fujishima, Electrochim. Acta, 36, pp.1585-1590, 1991.
120.S. Cai, L. Gao, L. Su, J. Zhang and A. Fujishima, Electrochim. Acta, 36, pp.1591-1593, 1991.
121.S. Cai, D. Jiang, J. Zhang, R. Tong, S. Jin and A. Fujishima, Electrochim. Acta, 37, pp.425-428, 1992.
122.J. H. Kennedy, M. Anderman and R. Shinar, J. Electrochem. Soc., 128, pp. 2371-2373, 1981.
123.R. Shinar and J. H. Kennedy, Solar Energy Materials, 6, pp.323-335, 1982.
124.S. Mohanty and J. Ghose, J. Phys. Chem. Solids, 53, pp.81-91, 1992.
125.L. J. van der Pauw, Philips Research Reports, 13, pp.1-9, 1958.
126.F.-S. Shiau, T.-T. Fang and T.-H. Leu, J. Am. Ceram. Soc., 80, pp.286-290, 1997.
127.A. V. Rao, P. B. Wagh, D. Haranath, P. P. Risbud, S. D. Kumbhare, Ceramics International, 25, pp. 505-509, 1999.
128.J. Tauc, R. Grigorovici and A. Vancu , Phys. Stat. Sol., 15, p.455, 1996.
129.A. J. Bard and L. R. Faulkner, Electrochemical methods : Fundamentals and Applications, John Wiley &sons, 1980.
130.A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications, Chapman and Hall, 1990
131.L. L. Hench and J. K. West, Principles of electronic ceramics, John Wiley & sons, 1990.
132.W. Shockley, Electrons and Holes in Semiconductors: with Applications to Transistor Electronics, Van Nostrand, 1950.
133.D. E. Carlson and C. R. Wronski, Appl. Phys. Lett., 28, pp.671-673, 1976
134.D. L. Staebler and C. R. Wronski, J. Appl. Phys., 51, pp.3262-3268, 1980.
135.Y. K. Jeong and G. M. Choi, J. Phys. Chem. Solid, 57, pp.81-84, 1996.
136.K. Nakaoka, J. Ueyama and K. Ogura, J. Electrochem. Soc., 151, pp.C661-C665, 2004.
137.Z. Zhang, F. Zhou and E. J. Lavernia, Metallurgical and materials transactions A, 34A, pp.1349-1355, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38334-
dc.description.abstract本論文是針對光分解水的程序,分別在光催化和光電化學
系統中,進行光吸收體的開發研究。在光催化系統中,主要是
載負奈米金在K2La2Ti3O1 0 上以獲得高光反應效率的光觸媒;
在光電化學系統中, 主要是設計新型的Fe2O3/Si 雙重能隙薄
膜元件及製備p 型和n 型Fe2O3 薄膜。
在光催化系統方面,由於奈米金不但擁有高催化活性,且
在可見光區有一個表面電漿共振的光吸收峰,也許可提升在可
見光下的光反應活性。因此, 本研究選擇以K2La2Ti3O10 為光
觸媒擔體,探討奈米金的載負濃度、載負方法及前處理步驟,
對光催化水分解反應的影響。並且,以UV 或可見光為照射光
源,與文獻中已知的Ni/K2La2Ti3O1 0 光觸媒做比較。由研究結
果得知, 載負奈米金可增進K2La2Ti3O1 0 的光反應活性, 且以
初濕含浸法所製備的Au-i/K2La2Ti3O1 0, 其光反應活性較好。
在UV 光的照射下, Ni/K2La2Ti3O1 0 的光反應活性比
Au-i/K2La2Ti3O1 0 來得高, 可能原因是Ni/K2La2Ti3O1 0 擁有較
好的K2La2Ti3O1 0 結構,使得K2La2Ti3O1 0 擔體在吸光後可產生
較多的電子電洞對; 而在可見光的照射下, Au-i/K2La2Ti3O1 0
的光反應活性比較高,可能原因是奈米金在可見光下的表面電
漿共振可極化金顆粒表面的電子分佈,再藉由電子在奈米金與
K2La2Ti3O1 0 之間的傳遞, 減少再結合機率。
光催化水分解有兩項主要缺點: (1) 隨後之氫氧產物分
離; (2)光觸媒能隙值過大, 使得在太陽光下的的光能轉換效
率較低。因此,本論文研究兩極的光電化學系統,並以多重能
隙原理設計光電極,在考慮各種材料限制後,初步選擇氧化鐵
(Fe2O3 )和矽(Si)的雙重能隙薄膜元件, 再以銦錫氧化物(ITO)
薄膜為中間透光歐姆導電層。由文獻可知,該元件的材料組合
可使光電轉換效率由單一矽薄膜之24%提升至32%。由於矽
和ITO 的薄膜製備技術成熟, 再加上Fe2O3 為n 型半導體材
料, 故製備p 型Fe2O3 薄膜則成為製備此雙重能隙薄膜的關
鍵。本研究先進行製備p 型Fe2O3 塊材的研究, 利用Mg 原子
的摻雜,探討不同熱處理步驟對p 型Fe2O3 塊材性質的影響。
由研究結果可結論出,製備p 型Fe2O3 塊材的較佳處理步驟為
在3 大氣壓氧氣下以900℃ 持溫20 小時, 較佳的鎂摻雜濃度
為0.2 at%。
接下來, 本研究應用磁控射頻物理濺鍍法獲得p 型和n
型Fe2O3 薄膜, p 型和n 型摻雜物採用Mg 原子和Si 或Ti 原
子。而為了獲得光電轉換效率高的p 型Fe2O3 薄膜,本研究探
討不同濺鍍條件對薄膜性質的影響。由研究結果發現,電漿氣
體組成是影響p 型Fe2O3 薄膜性質的主因, 與Ar 或Ar/O2 混
合氣體做比較, 只有利用純O2 電漿氣體濺鍍Fe2O3 薄膜時,
才可獲得較高p 型光電流的Fe2O3 薄膜。高溫後處理會使Fe2O3
薄膜由p 型轉變為n 型,可能原因應為高溫後處理使薄膜壓縮
至較密堆積,減少氧原子間隙而形成n 型。在高壓氧氣下高溫
後處理比在常壓空氣下更能提高Fe2O3 薄膜的n 型光電流。改
變光源為UV 燈泡對n 型光電流的提升較p 型光電流大40 倍。
摻雜不同原子和不同濃度於Fe2O3 薄膜, 只影響Fe2O3 薄膜的
p 型和n 型光電流數值,對薄膜結構和能隙值影響不大。在本
研究的結果中,較高p 型光電流的Fe2O3 薄膜為,未經高溫後
處理的2at% Mg-Fe2O3 薄膜, 其p 型光電流密度在0.4V 的負
偏壓下為0.02 mA/cm2; 而較高n 型光電流的Fe2O3 薄膜為,
依序在常壓空氣和高壓氧氣下高溫後處理的1at% Ti-Fe2O3 薄
膜, 其光電流密度在0.6V 的正偏壓下為0.36 mA/cm2, 並由
效率公式的計算可得, 實際光量子效率φc o n v 和光能轉換效率
ηp r a c 分別為1.8%和0.44%。在ITO 基板上製備pn 接面和pin
接面的Fe2O3 薄膜元件,都無法獲得類似固態太陽能電池在照
光下的電流電壓曲線。與非晶矽薄膜的性質比較可發現,Fe2O3
薄膜的光/暗導電度比遠小於非晶矽, 推測應為Fe2O3 的間接
能隙性質所影響。
本研究主要的成果及貢獻包括:在光催化系統的研究中,
首先載負奈米金在K2La2Ti3O1 0 層狀鈦觸媒上, 發現奈米金可
提升K2La2Ti3O1 0 層狀鈦觸媒在可見光下的光反應活性。在光
電化學系統的研究中, 已設計出便宜的Fe2O3/Si 雙重能隙薄
膜光電極,可在太陽光下獲得較高的理論光電轉換效率。利用
Mg、Si 和Ti 原子的摻雜,可藉由磁控射頻物理濺鍍法製備出
具有p 型和n 型光電流的Fe2O3 薄膜。
zh_TW
dc.description.abstractThis thesis was focused on the development of novel photo-converters by the photo-catalytic and photo- electrochemical systems for water splitting to hydrogen. In the photo-catalytic system, the effects of gold loading on the perovskite titanate substrate (K2La2Ti3O10) for water splitting were studied. In the photo-electrochemical system, the device of Fe2O3/Si multiple bandgap films was designed and the preparations of the p-type and n-type Fe2O3 films were studied.
In the photo-catalytic system, the factors of the loading processes and pretreatment procedures on Au/K2La2Ti3O10 were investigated. Also, a preliminary comparison of the activities of nano-gold and the reduced (then partially re-oxidized) nickel for water splitting under UV or visible light were made. It was found that Au/K2La2Ti3O10 prepared by an incipient wetness impregnation process possessed a better activity for water splitting than that prepared by a deposition process. This was because a better crystallinity of K2La2Ti3O10 was preserved from the impregnation process than that from the deposition. Moreover, the activity of Au/K2La2Ti3O10 can be increased significantly, after the reduction of gold ions to nano-gold metal through some pretreatment processes. When compared with the best metal–titanate catalyst reported in the literature (i.e., Ni/K2La2Ti3O10), Au/K2La2Ti3O10 possessed a lower hydrogen production rate in UV region and a higher one in visible region. This may be because Ni/K2La2Ti3O10 preserved a better crystallinity of K2La2Ti3O10 to produce more electron-hole pairs in UV region and Au/K2La2Ti3O10 had an absorption in the visible region from plasma resonance on the nano-gold surface, rather than on the Ni surface.
There were two bottlenecks in the photo-catalytic system, which were the separation of the mixing product (H2/O2) and the low theoretical quantum efficiency of the photo-catalyst under solar light. To improve the quantum efficiency for water splitting, the device of multiple bandgap films in the photo-electrochemical system was designed. Fe2O3 and Si were chosen as the top and bottom materials, and ITO was chosen as the transparent middle layer for ohmic contact. The theoretical quantum efficiency of this device for solar-to-electricity was raised to 32% from 24% of the single crystal Si solar cell. Due to the n-type intrinsic behavior of Fe2O3 and the maturity of the Si and ITO technology, the p-Fe2O3 film preparation was the key research. The p-Fe2O3 film was fabricated by RF magnetron sputtering process and the p-Fe2O3 target. The preparation of p-Fe2O3 pellets was studied for the p-Fe2O3 target preparation. From our results of the p-Fe2O3 pellets preparation, it was demonstrated that the p-Fe2O3 pellet could be made by Mg doping, under the conditions of three atmospheres oxygen pressure at 900℃ for 20 h.
In order to fabricate p-type and n-type Fe2O3 films with good photo-efficiencies, some sputtering factors were investigated. The p-type dopant of Fe2O3 films was the Mg atom and the n-type one was the Si or Ti atom. The results were shown that the plasma composition was an important factor for sputtering the p-Fe2O3 film. The Fe2O3 films with p-type photocurrent were obtained only by sputtering in the O2 plasma gas. The pure Fe2O3 films transformed from p-type to n-type after the post-annealing treatment, due to the release of the interstitial O2 atoms by structure compression. The better n-type photocurrent can be obtained by post-annealing in three atmospheres oxygen pressure. Moreover, the more Mg doping levels the Fe2O3 film contained, the higher p-type photocurrent was obtained. On the contrary, the rising effect of the n-type photocurrent was obtained by doping with the Si and Ti atoms. It has been concluded that the higher p-type photocurrent density of 0.02 mA/cm2 at -0.4V was obtained by the 2at% Mg-Fe2O3 film which was sputtered under O2 plasma gas. The higher n-type photocurrent density of 0.36 mA/cm2 at +0.6V was obtained by the 1at% Ti-Fe2O3 film which was sputtered under O2 plasma, followed by the post-annealing treatments in air and in three atmospheres oxygen pressure. The higher real quantum yield of solar-to-electricity and quantum efficiency of solar-to-hydrogen for the above-mentioned 1at% Ti-Fe2O3 film were 1.8% and 0.44%, respectively. The devices of pn and pin junction Fe2O3 films were fabricated on ITO glass substrate by RF magnetron sputtering process. None of them had the phenomenon of solid state solar cell. Compared with the amorphous Si film (a-Si), the quantum yield of the Fe2O3 film was much lower than that of the a-Si film, probably due to the indirect bandgap property of the Fe2O3 film.
The main contributions of this thesis were listed as below: (1) the quantum yield of K2La2Ti3O10 was increased in the visible region by gold loading, (2) the cheaper device of the Fe2O3/Si multiple bandgap films was designed to obtain the higher theoretical quantum efficiency, (3) the Fe2O3 films with the higher p-type and n-type photocurrents were sputtered by doping with Mg and Ti atoms, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:30:43Z (GMT). No. of bitstreams: 1
ntu-94-D88524014-1.pdf: 5136443 bytes, checksum: f3538e77852ef0afbd8724ebded552e0 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 I
英文摘要 IV
目錄 VIII
圖索引 XII
表索引 XXIV
第一章 緒論 1
1.1 乾淨能源 1
1.2 氫能之應用價值 1
1.3 標準太陽光光譜的定義 2
1.4 各種光能轉換效率的定義及計算 3
1.5 光分解水的反應系統 6
1.6 研究方向 7
第二章 奈米金光觸媒的光催化水分解系統 9
2.1 前言 9
2.1.1 光催化系統 9
2.1.2 光觸媒的文獻回顧 9
2.1.3 金屬載負的文獻回顧 11
2.2 研究內容 12
2.3 實驗部分 12
2.3.1 K2La2Ti3O10層狀鈦觸媒的製備 12
2.3.2 金屬載負的製備 13
2.3.3 光催化水分解的反應裝置 13
2.3.4 觸媒性質分析 15
2.3.5 藥品來源 17
2.4 結果與討論 17
2.4.1 金載負濃度的影響 17
2.4.2 金載負方法的影響 19
2.4.3 前處理步驟的影響 24
2.4.4 與Ni/K2La2Ti3O10的比較 28
2.5 結論 31
第三章 多重能隙薄膜之光電化學系統研究設計 32
3.1 前言 32
3.1.1 光電化學系統 32
3.1.2 多重能隙薄膜的原理 32
3.1.3 多重能隙薄膜的電流電壓特性 35
3.1.4 多重能隙薄膜的設計條件 36
3.1.5 光電極之設計條件 37
3.1.6 多重能隙薄膜的文獻回顧 37
3.2 Fe2O3/Si雙重能隙薄膜元件 39
3.2.1 材料選擇 39
3.2.2 元件設計 40
3.2.3 元件製備 43
3.3 光電化學系統的研究方向 44
第四章 p型Fe2O3塊材之製備 45
4.1 前言 45
4.1.1 鐵氧化物的種類 45
4.1.2 Fe2O3塊材的文獻回顧 47
4.2 研究內容 50
4.3 實驗部分 51
4.3.1 p型Fe2O3塊材的製備 51
4.3.2 塊材性質鑑定 51
4.3.3 藥品來源 52
4.4 結果與討論 53
4.4.1 p型Fe2O3粉末 53
4.4.2 p型Fe2O3塊材 61
4.5 結論 72
第五章 p型和n型Fe2O3薄膜之製備 75
5.1 前言 75
5.1.1 Fe2O3薄膜的文獻回顧 75
5.1.2 磁控射頻物理濺鍍法 76
5.2 研究內容 79
5.3 實驗部分 80
5.3.1 p型和n型Fe2O3薄膜的製備 80
5.3.2 p型和n型Fe2O3濺鍍靶材的製備 80
5.3.3 薄膜性質鑑定 81
5.3.4 藥品來源 86
5.4 結果與討論 86
5.4.1 以燒結靶系統濺鍍p型Fe2O3薄膜 86
5.4.1.1 使用O2當電漿氣體 86
5.4.1.2 使用Ar或Ar/O2混合氣當電漿氣體 92
5.4.1.3 綜合討論 98
5.4.2 以粉末靶系統濺鍍p型Fe2O3薄膜 98
5.4.2.1 使用O2當電漿氣體 98
5.4.2.2 使用Ar或Ar/O2混合氣當電漿氣體 105
5.4.2.3 綜合討論 116
5.4.3 以粉末靶系統濺鍍n型Fe2O3薄膜 118
5.4.3.1 摻雜Si的n型Fe2O3薄膜 118
5.4.3.2摻雜Ti的n型Fe2O3薄膜 124
5.4.3.3 綜合討論 131
5.4.4 高溫後處理的影響 133
5.4.4.1 高溫後處理的程序設計 133
5.4.4.2 在常壓空氣下高溫後處理的Fe2O3薄膜 137
5.4.4.3 在高壓氧氣下高溫後處理的Fe2O3薄膜 158
5.4.5 UV光源的影響 170
5.4.6 實際光量子產率和光能轉換效率的計算 177
5.4.7 pn和pin接面Fe2O3薄膜元件 183
5.4.8 p型和n型Fe2O3薄膜的綜合討論 187
5.4.8.1 不同摻雜原子與摻雜濃度的影響 187
5.4.8.2 Fe2O3與非晶矽的比較 194
5.5 結論 197
第六章 總結與建議 199
6.1 總結 199
6.2 研究成果與貢獻 201
6.3 建議與展望 201
誌謝 203
參考文獻 204
附錄A 由XRD圖譜半高寬決定結晶大小 212
附錄B 半導體的霍爾效應量測 215
附錄C 半導體電性及光電流量測原理 219
dc.language.isozh-TW
dc.title光分解水產氫能之研究---含金鈦觸媒的製備、Fe2O3/Si元件設計與Fe2O3薄膜的製備zh_TW
dc.titleThe Study of Water Photodecomposition to H2 : Au-loaded Titanate Preparation, Fe2O3/Si Multibandgap Films Design and Fe2O3 Film Preparationen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.coadvisor洪傳獻(Chum-Sam Hong)
dc.contributor.oralexamcommittee江雨龍(Yeu-Long Jiang),顏溪成(Shi-Chern Yen),何國川(Kuo-Chuan Ho),吳紀聖(Chi-Sheng Wu)
dc.subject.keyword水分解,氫能,光催化系統,奈米金,層狀鈦觸媒,光電化學系統,多重能隙,薄膜,太陽能電池,塊材,射頻磁控濺鍍法,氧化鐵,p型,n型,鎂,矽,鈦,zh_TW
dc.subject.keywordWater splitting,Hydrogen,Photo-catalytic,Au,Perovskite titanate,Photo-electrochemical,multi-bandgap,thin film,solar cell,pellet,RF sputtering,Fe2O3,p-type,n-type,Magnesium,Silicon,Titanium,en
dc.relation.page224
dc.rights.note有償授權
dc.date.accepted2005-07-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
5.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved