請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38324
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 樓國隆 | |
dc.contributor.author | Yi-Ching Hsueh | en |
dc.contributor.author | 薛宜青 | zh_TW |
dc.date.accessioned | 2021-06-13T16:30:26Z | - |
dc.date.available | 2005-08-02 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-12 | |
dc.identifier.citation | Bloch C Jr, Richardson M. (1991) A new family of small (5 kDa) protein inhibitors of insect alpha-amylase from seeds or sorghum (Sorghum bicolar(L) Moench) have sequence homologies with wheat γ-purothionins. FEBS Lett 279:101-104.
Bohlmann H. (1994) The role of thionins in plant protection. Critical Rev. Plant Sci 13:1-16. Broekaert WF, Cammue BP, Osborn RW, De Samblanx GW, Thevissen K. (1997)Antimicrobial peptides from plants. Critical Rev. Plant Sci 16:297-323. Broekaert WF, Terras FR, Cammue BP, Osborn RW. (1995) Plant defensins:Novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353-1358. Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF. (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267:2228-2233. Carlini CR, Oliveira AE, Azambuja P, Xavier-Filho J, Wells MA. (1997) Biological effects of canatoxin in different insect models:Evidence for a proteolytic activation of the toxin by insect cathepsinlike enzymes. J Rcon Entomol 90:340-348. Salvador C, Mora SI, Ordaz B, Antaramian A, Vaca L, Escobar LI. (2003) Basal activity of GIRK5 isoform. Life Sci 72:1509-1518. Catterall WA. (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Am Rev Pharmacol Toxicol 20:15-43. Chen JJ, Chen GH, Hsu HC, Li SS, Chen CS.(2004) Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris. J Agric Food Chem 52:2256-2261. Chen KC, Lin CY, Chung MC, Kuan CC, Sung HY, Samson CS, Tsou C, Geroge Kuo and Chen CS. (2002) Cloning and characterization of a cDNA encoding an antimicrobial protein from mung bean seeds. Bot Bull Acad Sin 43:251-259. Chen KC, Lin CY, Kuan CC, Sung HY and Chen CS. (2002) A novel defensin encoded by a mungbean cDNA exhibits insecicidal activity against bruchid. J Agric Food Chem 50:7258-7263. Chiang CC and Hadwiger LA. (1991) The Fusarium solani-induced expression of a pea gene family encoding high cysteine content protein. Mol Plant-Microbe Interact 4:324-331. Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier, L. (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239-19245. Collila FJ, Rocher A, Mendez E. (1990.)gamma-Purothionins:amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270:191-194. DeBin JA, Maggio JE, Strichartz GR. (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol 264:C361-C369. Duvick JP, Rood T, Rao AG, Marshak DR. (1992) Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 267:18814-18820. Evans J, Wang Y, Shaw K, Vernon LP. (1989) Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosin iodination. Proc Natl Acad Sci USA 86:5849-5853. Froy O. and Gurevitz M. (1998) Membrane potentional modulars:a thread of scarlet from plants to human. FASEB J 12:1793-1796. Garcia Olmedo F, Molina A, Segura M, Moreno M. (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72-74. Garria Olmedo F, Molina A, Alamillo JM, Rodriguez Palenzuela P. (1999) Plant defense peptides. Biopolymers(Pept Sci) 47:479-491. Gmachl M and Kreil G. (1995) The precursors of the bee venom constituents apamin and MCD peptide are encoded by two genes in tandem which share the same 3’-exon. J Biol Chem 270:12704-12708. Grossi de Sa MF, Mirkov TE, Ishimoto M, Colucci G, Bateman KS, Chrispeels MJ. (1997) Molecular characterization of bean alpha-amylase inhibitor that inhibits the alpha-amylase of the Mexican bean weevil Zabrotes subfasciatus. Planta 203:295-303. Hamill OP, Marty A, Neher E, Sakmann B and Sigeortg FJ. (1981) Improved patch-clamp techniques for high resolution recording from cells and cell-free membrane patches. Pflugers Arch 391: 85-100. Harrison SJ, Marcus JP, Goulter KC, Green JL, Maclean DJ and Manners JM.(1997) Antimicrobial peptide from the Australian native Hardenbergia violacea provides the first functionally characterized member of a subfamily of plant defensins. Aust J Plant Physiol 24:571-578. Janssen BJ, Schirra HJ, Lay FT, Anderson MA, Craik DJ. (2003) Structure of Petunia hybrida Defensin 1,a Novel Plant Defensin with Five Disulfide Bonds. Biochemistry 42:8214-8222. Jones BL, Lookhart GL and Johnson, DE. (1985) Improved separation and toxicity analysis methods for purthionins. Cereal Chem 62:327-331. Kobayashin Y, Takashima H, Tamaoki H, Kyogoku Y, Lambert P, Kuroda H, Chino N, Watanabe T, Kimura T, Sakakibara S and Moroder L. (1991) The cysteine-stabilized-helix:a common structural motif of ion-channel blocking neurotoxic peptides. Biopolymers 31:1213-1220. Koiwa H, Shade RE, Zhu Salzman K, Subramanian L, Murdock LL, Nielsen SS, Bressan RA and Hasegawa PM. (1998) Phage display selection can differentiate insecticidal activity pf soybean cystatins. Plant J 14:371-379. Larunanandaa B, Singh A and Kao TH. (1994) Characterization of a predominantly pistil-expressed gene encoding a gamma-thionin-like protein of Petunia inflate. Plant Mol Biol 26:459-464. Lay FT., Schirra HJ., Scanlon MJ., Anderson MA and Crail DJ. (2003) The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein afAFP. J Mol Bio 325:175-188. Macedo ML, Fernandes KV, Sales MP, Xavier-Filho J. (1995) Purfication and properties of storage proteins (vivilins) from cowpea (Vigna unguiclate) seeds which are susceptible or resistant to the bruchid beetle Callosobruchus maculates. Braz J Med Biol 28:183-190. Mendez E, Moreno GB, Colilla F, Pelaez F, Limas GG, Mendez R, Soriano F, Salinas M and de Haro C. (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γhordothionin, from barley endosperm. Eur J Biochem 194:533-539. Miller C. (1995) The charybdotoxin family of K+ channel-blocking peptides. Neuron 15:5-10. Moreno M., Segura A. and Garcia-Olmedo F. (1994) Pseudothionin-St1, a potato peptide active against pathogens. Eur J Biochem 223:135-139. Osborn RW, De Samblax GW, Thevissen K, Goderis I, Torrekens S, Leuven FV, Attenborough S, Rees SB and Broekaert WF (1995) Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257-262. Osorn TC, Alexander DC, Sun SM, Cardona C, Bliss FA. (1998) Insecticidal activity and lectin homology of arcelin seed protein. Science 240 :207-210. Ryan CA. (1990) Protease inhibitors in plant:genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425-449. Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV and Chrispeels MJ. (1994) Transgenic pea seeds expresiing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology 12:793-796. Simonson MS, Osanai T and Dunn MJ. (1990) Endothlin isopeptides evoke Ca2+ signaling and oscillations of cytosolic free Ca2+ human mesangial cells. Biochim Biophys Acta 1055:63-68. Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J, Cammue BPA and Broekaert WF. (1995) Small cysteine-rich antifungal proteins from radish:The role in host defense. Plant Cell 7:573-588. Terras FRG, Schoofs HME, De Bolle MFC, Ress SB, Vanderleyden J, Cammue BPA and Broekaert EF. (1992) Analysis of two novle classless of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301-15309. Thomma BPMJ, Cammue BPA and Thevissen K. (2002) Plant defensins. Planta 216:193-202. Van Etten HD, Mattews DE and Mattews PS. (1989) Phytoalexin detoxification:Importance for pathogenicity and practical implications. Annu Rve Phytopath 27:143-164. Van Parijs J, Broekaert WF, Goldstein IJ and Peumans WJ. (1991) Hevein:an antifungal protein from rubber-tree (Hevea Brasiliensis) latex. Planta 183:258-264. Vernon, LP. (1992) Pyrularia thionin:physical properties, biological responses and comparison to other thionins and cardiotoxin. J Toxicol Toxin Rev:169-191. Yang CM., Ong R, Hsieh JT and Yo YL. (1994) Sarafotoxin-induced calcium mobilization in cultured dog tracheal smooth muscle cells. J Recept Res 14:423-445. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38324 | - |
dc.description.abstract | 各種動植物體中普遍存在防禦素(Defensins)或相關的分子,藉以防禦異物入侵或毒殺獵物。以植物來說,thionins為最有名的例子,可以對抗細菌或真菌的入侵。2002年國人首先在綠豆發現具有抗昆蟲特性(insecticidal activity)之植物防禦素,名為VrCRP (Cysteine-rich Protein of Vigna radiata) ,後稱VrD1 (Vigna radiata defensin 1)。此防禦素屬於cysteine-rich proteins,具有由4對雙硫鍵(disulfide bonds)連結一段α-helix (即cysteine-stabilizing helix) 和三段β-strands的基本結構。
VrD1對綠豆豆象(bruchids; Callosobruchus chinensis or C. maculatus) 具有毒殺的效果,唯VrD1造成綠豆豆象死亡之活性來源及作用機制則尚不十分明瞭。過去我們在完成VrD1及其多種突變種的3-D結構模型(homology structure models),並分析了其與scorpion toxins的異同後,已經合理推斷出VrD1造成綠豆豆象死亡之活性來源在於分子一側之數個鹼性殘基,並可能使用類似蠍毒中的short toxins之鍵結模式與細胞膜上之鉀或氯離子通道作用;而另一側之數個鹼性殘基則負責抗菌。 所以在本論文中,我們設計了一系列的電生理實驗,希望透過全細胞電位鉗制法 (whole cell voltage clamp method),試圖找出VrD1作用在秋行軍蟲細胞株 (Sf-21) 的標的分子(target molecules)。實驗所得的結果顯示,VrD1對秋行軍蟲的細胞膜電流產生大規模的抑制情形;再由平衡電位與結構分析逐步歸納出可能的目標,並佐以不同的拮抗物測試,目前已排除是透過氯離子通道產生作用,而更進一步指向以鉀離子通道作為此標的分子。這些發現在動植物間的演化上應具重大意義,甚至在生物性農藥之相關合理設計方面也應有關鍵的幫助。 | zh_TW |
dc.description.abstract | A variety of evolutionarily related defensin molecules is found in plants and animals. However, little is known about whether defensins are also involved in plant resistance to insect. A cDNA encoding a small cysteine-rich protein designated VrD1 (VrCRP) was isolated in the laboratory of Prof. Ching-San Chen, Academia Sinica, from the bruchid-resistant mungbean -- a well-known important food source in Asia and worldwide. VrD1 is apparently the first reported plant defensin exhibiting in vitro and in vivo insecticidal activity against C. chinensis. The molecular and structural basis of such unique insecticidal activity of VrD1 is not clear.
VrD1 has a four-disulfide linkage which connects the cysteine-stabilizing helix and the β–sheet, and can be categorized as a member of the γ-thionin family. From our structural analysis, VrD1 may use the three to four basic residues on one side of the molecule to perform the interaction with its membrane target, which is comprehended as potassium or chloride channel(s). And as further described in this thesis, our electrophysiological results with whole-cell recordings have demonstrated a very large inhibitory effect of VrD1 on the membrane potentials of SF-21 cells. Upon utilization of the channel agonists/antagonists, it is suggested that the insecticidal activity of VrD1 be very possibly related to the modulation or directly targeting at the potassium channels on Sf-21 plasma membranes. The exact channel type(s) is still under intensive investigations and will be the focused concerns in the near future. Not only to provide the necessary information required for the studies of molecular mechanisms, our data should be also very helpful in the development of bioactive insecticides and in the related rational drug designs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:30:26Z (GMT). No. of bitstreams: 1 ntu-94-R92450001-1.pdf: 2619639 bytes, checksum: f46cf77ee28ea0004be0e3d03aaf3b2e (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目次
中文摘要………………………………………………1 英文摘要………………………………………………2 前言……………………………………………………4 研究動機………………………………………………7 實驗材料………………………………………………9 實驗步驟………………………………………………11 實驗結果與討論………………………………………13 結語與未來展望………………………………………16 參考文獻………………………………………………17 附圖 圖一、cysteine-stabilizing α-helical motif……………………21 圖二、部份影響細胞膜電位的多肽防禦性毒素之基因結構………22 圖三、植物防禦素的基本結構模型…………………………23 圖四、γ-thionin三度空間結構圖……………………………24 圖五、VrD1對Sf-21細胞膜電位的影響………………………25 圖六、Cs+對Sf-21細胞膜電流的影響………………………27 圖七、DIDS對Sf-21細胞膜電位的影響………………………30 圖八、VrD1與Cs+對Sf-21細胞膜電流的影響…………………32 圖九、Cs+和VrD1對Sf-21細胞膜電流的影響…………………35 附錄 圖一、二十個植物防禦素的胺基酸比對………………………41 圖二、VrD1的核酸序列及其產生的蛋白質序列…….…………42 表一、VrD1與相似的防禦素、蛋白脢抑制劑和神經蠍毒的比較……43 圖三、VrD1的結構預測……………………………………45 圖四、比較VrD1和scorpion toxins與γ-thionins的結構…………46 表二、VrD1與其它富含半胱胺酸蛋白質的序列比對……………47 圖五、VrD1與其細胞膜上目標的作用預測……………………48 圖六、VrD1表面帶正電胺基酸的示意圖………………………49 | |
dc.language.iso | zh-TW | |
dc.title | 綠豆防禦素VrD1之抗蟲活性及其與鉀離子通道作用之分子機制探討 | zh_TW |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳慶三,洪淑彬,蘇銘嘉,周綠蘋 | |
dc.subject.keyword | 綠豆防禦素,鉀離子通道, | zh_TW |
dc.subject.keyword | VrD1,cysteine-rich proteins,potassium channel, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 2.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。