Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38314
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王明光
dc.contributor.authorYu-Ting Liuen
dc.contributor.author劉雨庭zh_TW
dc.date.accessioned2021-06-13T16:30:13Z-
dc.date.available2006-07-07
dc.date.copyright2005-07-15
dc.date.issued2005
dc.date.submitted2005-07-12
dc.identifier.citationAnkudinov A. L., Ravel B., Rehr J. J., and Conradson S. D. (1998) FEFF8.20. Phys. Review. B 58, 7565-7576.
Arai Y., Elzinga E. J., and Sparks D. L. (2001) X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface. J. Colloid Interface Sci. 235, 80-88.
Arai Y. and Sparks D. L. (2002) Residence time effects on arsenate surface speciation at the aluminum oxide-water interface. Soil Sci. 167, 303-310.
Atkinson R. J., Hingston E. J., Posner A. M., and Quirk J. P. (1970) Elovich equation for the kinetics of isotope exchange reactions at solid-liquid interfaces. Nature. 226, 148-149.
Benjamin M. M. and Leckie J. O. (1981) Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 79, 209-221.
Benson S. W. (1960) Experimental characterization of simple kinetic systems. In The Foundations of Chemical Kinetics, pp. 10-83. McGraw-Hill Book Co. Inc., New York.
Besserguenev A. V., Fogg A. M., Francis R. J., Price S. J., and O’Hare D. (1997) Synthesis and structure of the gibbsite intercalation compounds〔LiAl2(OH)6〕X﹛X=Cl, Br, NO3﹜and 〔LiAl2(OH)6〕X.H2O using synchrotron X-ray and neutron podwer diffraction. Chem. Mater. 9, 241-247.
Carlino S. (1997) The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods. Solid State Ionics 98, 73-84.
Cooper S. and Dutta P. K. (1990) 4-Nitrohippuric acid in layered lithium aluminates: Onset of nonlinear optical properties. J. Phys. Chem. 94, 114-118.
Dutta P. K. and Puri M. (1989) Anion exchange in lithium aluminate hydroxides. J. Phys. Chem. 93, 376-381.
Dutta P. K. and Robins D. S. (1994) Interlayer dynamics of a fatty acid exchanged lithium aluminum layered double hydroxide monitored by infrared spectroscopy and pyrene fluorescence. Langmuir 10, 4681-4687.
Fendorf S., Eick M. J., Frossl P., and Sparks D. L. (1997) Arsenate and chromate retention mechanism on goethite. 1. Surface structure. Environ. Sci. Technol. 31, 315-320.
Ferraris G. and Chiari G. (1970) The crystal structure of Na2HAsO4.7 H2O. Acta Cryst. B 26, 1574-1583.
Fogg A. M., Dunn J. S., Shyu S. G., Cary D. R., and O’Hare D. (1998) Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide 〔LiAl2(OH)6〕Cl•H2O. Chem. Mater. 10, 351-355.
Fogg A. M., Freij A. J., and Parkinson G. M. (2002) Synthesis and anion exchange chemistry of rhombohedral Li/Al layered double hydroxides. Chem. Mater. 14, 232-234.
Fuller C. C., Davis J. A., and Waychunas G. A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta 57, 2271-2282.
Goldberg S. and Johnston C. T. (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid Interface Sci. 234, 204-216.
Gupta S. K. and Chen K. Y. (1978) Arsenic removal by adsorption. J. Water Pollut. Control Fed. 50, 493-506.
Halter W. E. and Pfeifer H. R. (2001) Arsenic (Ⅴ) adsorption onto α-Al2O3 between 25 and 70℃. Appl. Geochem. 16, 793-802.
Hingston F. J., Posner A. M., and Quirk J. P. (1971) Anion adsorption by goethite and gibbsite I. The role of the proton in determining adsorption envelopes. J. Soil Sci. 38, 176-192.
Huang P. M., Wang M. K., and Kämpf N., and Schulze D. G. (2002) Aluminum hydroxides. In Soil Mineralogy with Environmental Applications (ed. J. B. Dixon and D. G. Schulze), pp. 261-286. Soil Science Society of America, Inc. Madison, Wisconsin, USA.
Khan A. I. and O’Hare D. (2002) Intercalation chemistry of layered double hydroxides: recent developments and applications. J. Mater. Chem. 12, 3191-3198.
Kwon T., Tsigdions G. A., and Pinnavaia T. J. (1988) Pillaring of layered double hydroxides (LDH's) by polyoxometalate anions. J. Am. Chem. Soc. 110, 3653-3654.
Ladeira A. C. Q., Ciminelli V. S. T., Duarte H. A., Alves M. C. M., and Ramos A. Y. (2001) Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (Ⅴ) adsorbed on gibbsite. Geochim. Cosmoschim. Acta. 65, 1211-1217.
Liu C. and Huang P. M. (2003) Kinetics of lead adsorption by iron oxides formed under the influence of citrate. Geochim. Cosmochim. Acta. 67, 1045-1054.
Liu F., De Cristofaro A., and Violante A. (2001) Effect of pH, phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite. Soil Sci. 166, 197-208.
Livesey N. T. and Hunag P. M. (1981) Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Sci. 131, 88-94.
Low M. J. D. (1960) Kinetics of chemisorption of gases on solids. Chem. Review. 60, 267-312.
Lytle F. W., Greefgor R. B., Sandstrom D. R., Marques E. C., Wong F., Spiro C. L., Huffman G. P., and Huggins F. E. (1984) Measurement of soft-X-ray absorption spectra with a fluorescence-chamber detector. Nucl. Instrum. Methods Phys. Res., A Accel. Spectrom. Detect. Assoc. Equip. 226, 542-548.
Madrid L. and de Arambarri P. (1985) Adsorption of phosphate by two iron oxides in relation to their porosity. J. Soil Sci. 36, 523-530.
Manceau A. (1995) The mechanism of anion adsorption on iron oxides: evidence for the bonding of arsenate tetrahedral on free Fe(O,OH)6 edges. Geochim. Cosmochim. Acta 59, 3647-3653.
Manning B. A. and Goldberg S. (1996) Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays and Clay Miner. 44, 609-623.
Manning B. A., Fendorf S. E., and Goldberg S. (1998) Surface structures and stability of arsenic(Ⅲ) on goethite: Spectroscopy evidence for inner-sphere complexes. Environ. Sci. Technol. 32, 2383-2387.
Miyata S. and Hirose T. (1978) Adsorption of N2, O2, CO2, and H2 on hydrotalcite-like system: Mg2+-Al3+-(Fe(CN)6)4-. Clays Clay Miner. 26, 441-447.
Moore J. W. and Pearson R. G. (1981) Kinetics and Mechanisms. 3rd ed. John Wiley & Sons, New York.
Newman S. P. and Jones W. (1998) Synthesis, characterization and application of layered double hydroxides containing organic guests. New J. Chem. 105-115.
Oscarson D. W., Huang P. M., Defosse C., and Herbillon A. (1981) Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments. Nature (London). 291, 50-51.
Raven K. P., Jain A., and Loeppert R. H. (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 32, 344-349.
Serna C. J., White J. L., and Hem S. L. (1977) Hydrolysis of aluminum-tri-(sec-butoxid) in ionic and nonionic media. Clays Clay Miner. 25, 384-391.
Serna C. J., Rendon J. L., and Iglesias J. E. (1982) Crystal-chemical study of layered〔Al2Li(OH)6〕+X-.nH2O. Clays Clay Miner. 30, 180-184.
Smedley P. L. and Kinniburgh D. G. (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17, 517-568.
Sparks D. L. (1989) Kinetics of Soil Chemical Processes. Academic Press, New York.
Sparks D. L. (1999) Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. In Soil Physical Chemistry (ed. D. L. Sparks), pp. 138-148. CRC Press, New York.
Stern E. A. (1988) Theory of EXAFS. In X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (ed. D. C. Koningsberger and R. Prins), pp. 3-51. John Wiley & Sons, New York.
Stumm W. (1992) The coordination chemistry of the hydrous oxide-water interface. In Chemistry of the Solid Water Interface. pp. 13-41. Wiley & Sons. New York.
Tarasov K. A., Isupov V. P., Chupakhina L. E., and O’Hare D. (2004) A time resolved, in-situ X-ray diffraction study of the de-intercalation of anions and lithium cations from 〔LiAl2(OH)6〕n X•qH2O (X = Cl-, Br-, NO3-, SO42-). J. Mater. Chem. 14, 1443-1447.
The United States Environmental Protection Agency (EPA) (2001) National Primary Drinking Water Regulations; Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring Regulated Entities. Federal Register/Vol. 66, No. 14/Monday, January 22, 2001 / Rules and Regulations.
Twu J. and Dutta P. K. (1989) Structure and reactivity of oxovanadate anions in layered lithium aluminate materials. J. Phys. Chem. 93, 7863-7868.
Waychunas G. A., Rea B. A., Fuller C. C., and Davis J. A. (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57, 2251-2269.
Weerasooriya R., Tobschall H. J., Wijesekara H. K. D. K., Arachchige E. K. I. A. U. K., and Pathirathne K. A. S. (2003) On the mechanistic modeling of As(Ⅲ) adsorption on gibbsite. Chemosphere. 51, 1001-1013.
Weerasooriya R., Tobschall H. J., Wijesekara H. K. D. K., and Bandara A. (2004) Macroscopic and vibration spectroscopic evidence for specific bonding of arsenate on gibbsite. Chemosphere. 55, 1259-1270.
Yang D. S., Wang M. K., and Wang S. L. (2004) Synthesis of Li/Al layered double hydroxide-guest composites under mild acid conditions. Clay Miner. 39, 115-121.
You Y., Zhao H., and Vance G. F. (2002) Hybrid organic-inorganic derivatives of layered double hydroxides and dodecylbenzenesulfonate: Preparation and adsorption characteristics. J. Mater. Chem. 12, 907-912.
Ziegler F., Scheidegger A. M., Johnson C. A., Dahn R., and Wieland E. (2001) Sorption mechanisms of zinc to calcium silicate hydrate: X-ray absorption fine structure (XAFS) investigation. Environ. Sci. Technol. 35, 1550-1555.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38314-
dc.description.abstract砷為人類的致癌物且常見於自然環境中。吸持作用是環境中可用來控制砷分布的最重要的化學反應之一;層狀矽酸鹽、金屬氧化物及有機物質可以藉由形成內圈或外圈錯合物來吸附重金屬,成為生態圈中重金屬的重要匯池。本文是以夾層為氯化物之鋰鋁層狀雙氫氧基化合物作為吸附材料,從巨觀及微觀的角度探討砷酸鹽在夾層為氯化物之鋰鋁層狀雙氫氧基化合物上的吸持行為。夾層為氯化物之鋰鋁層狀雙氫氧基化合物是以氯化鋰插入層狀的Al(OH)3而合成的,直到1977年才被廣泛的研究,本實驗是第一次將夾層為氯化物之鋰鋁層狀雙氫氧基化合物應用在環境復育上,即利用其來吸持毒性甚大的砷酸鹽。
第一部份的實驗,其目的在觀察在278, 288, 298及308 K且pH 5.0下砷酸鹽在夾層為氯化物之鋰鋁層狀雙氫氧基化合物之動力吸附行為。實驗結果發現,其動力吸附行為可分為快反應及慢反應,且都符合二級的動力方程式。推測造成兩相吸附行為的原因部份是由於夾層為氯化物之鋰鋁層狀雙氫氧基化合物上吸附位置的異質性。從X光射線吸收邊緣延續光譜細微構造的分析結果可知,砷酸鹽會與夾層為氯化物之鋰鋁層狀雙氫氧基化合物中的鋰與鋁分別以雙螯單核型與雙螯雙核型的鍵結形成內圈錯合物。在第二部份的實驗中,目的為藉著等溫吸附、吸附邊緣實驗及X光射線吸收邊緣延續光譜細微構造的技術比較砷酸鹽在夾層為氯化物之鋰鋁層狀雙氫氧基化合物與三水鋁石上 (α-Al(OH)3) 的吸附行為,進而了解位於層狀Al(OH)3中之氯化鋰對於夾層為氯化物之鋰鋁層狀雙氫氧基化合物吸附砷酸鹽之貢獻。實驗結果顯示,砷酸鹽在夾層為氯化物之鋰鋁層狀雙氫氧基化合物上的最大吸附量為在三水鋁石上的六倍且夾層為氯化物之鋰鋁層狀雙氫氧基化合物在pH 4.0到pH 9.0下對砷酸鹽的吸附量都大於三水鋁石。由X光射線吸收邊緣延續光譜細微構的分析中可知,砷酸鹽不僅與夾層為氯化物之鋰鋁層狀雙氫氧基化合物中之鋁鍵結也與鋰鍵結,鋁對於吸附砷酸鹽的貢獻會隨著pH值的升高而減弱;不同於鋁,鋰提供一不受pH值影響之吸附位置且會提高層狀Al(OH)3表面對砷酸鹽的親和力。
zh_TW
dc.description.abstractArsenic is a commonly occurring toxic metal in natural ecosystems and a known carcinogen in humans. Sorption, however, is one of the most important chemical processes to control the distribution of arsenic in the environment. Phyllosilicates, metal (hydr)oxides, and humic substances adsorb heavy metals by forming of inner- or outer- sphere sorption complexes, creating important sinks for these metals in ecosystem. Lithium / aluminum layered double hydroxide intercalated by chloride, as the sorbent for arsenate in this research, was formed by treatment with lithium chloride intercalated into the host structure of Al(OH)3. Li/Al LDH-Cl has not been well studied until 1977 and it is the first time that Li/Al LDH-Cl was used in environmental remediation for removing toxic anions. In this thesis, sorption of arsenate on Li/Al LDH-Cl was studied through sorption kinetics, isotherms, envelopes and mechanisms of arsenate sorbed on Li/Al LDH-Cl by extended X-ray absorption fine structure (EXAFS).
The kinetics of arsenate sorption at pH 5.0 was studied at 278, 288, 298 and 308 K in the first research. As the results showed, arsenate sorption on Li/Al LDH-Cl could be divided into the fast and slow reactions described by the second-order rate equation. This biphasic arsenate sorption behavior was partially attributable to the heterogeneity of sorption sites. From the EXFAS analysis, inner-sphere complex occurred between arsenate and Li as well as Al of Li/Al LDH-Cl by bidentate mononuclear and bidentate binuclear configurations, respectively. In the second research, the sorption behavior of arsenate on Li/Al LDH-Cl and gibbsite (α-Al(OH)3) was studied to define how the intercalated lithium chloride participated in the sorption of arsenate through sorption isotherms, envelopes and EXFAS analysis. The sorption maximum of Li/Al LDH-Cl was approximately 6 times higher than that of gibbsite and the amounts of arsenate sorbed on Li/Al LDH-Cl at pH 4.0 – 9.0 were always higher than that on gibbsite. The reason of superior sorption capability of Li/Al LDH-Cl was sorption sites diversity of Li/Al LDH-Cl. The EXAFS analysis showed that arsenate sorbed on Li/Al LDH not only bonded with Al based on edges of Al(OH)3 layers but with Li located in the vacant octahedral sites with in Al(OH)3. However, the reaction between arsenate and Al would diminish with raised pH. In contrast with Al, Li served as permanent sorption sites participating in arsenate sorption and make the surface of Al(OH)3 had high affinity to arsenate.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:30:13Z (GMT). No. of bitstreams: 1
ntu-94-R92623001-1.pdf: 530100 bytes, checksum: 1f07859e8defaa76fb53566383e95c84 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsCONTENTS

Abstract………………………………………………………………Ⅰ
中文摘要.......................................................Ⅲ
Contents………………………………………………………………Ⅴ
List of Tables…………………………………………………………………Ⅶ
Caption of Figures…………………………………………………………………Ⅷ
Chapter 1 General Introduction……………………………………………………...1
Chapter 2 Sorption of Arsenate on Lithium/Aluminum Layered Double Hydroxide Intercalated by Chloride: Kinetic and Mechanistic Studies……………..4
2-1 Abstract………………………………………………………………..4
2-2 Introduction……………………………………………………………5
2-3 Experimental Procedures………………………………………………...7
2-3-1 Preparation and Identification of Li/Al LDH-Cl…………………..7
2-3-2 Kinetics of Arsenate Sorption……………………………………...8
2-3-3 Arsenate EXAFS Analysis…………………………………………9
2-4 Results and Discussion………………………………………………….11
2-4-1 Characteristics of Li/Al LDH-Cl…………………………………11
2-4-2 Kinetics of Arsenate Sorption on Li/Al LDH-Cl…………………11
2-4-2-1 Rate Coefficients of Arsenate Sorption………………….15
2-4-2-2 Activation Energy and Pre-exponential Factor of Arsenate Sorption………………………………………………...18
2-4-3 Arsenate EXAFS Analysis………………………………………..22
2-5 Conclusions…………………………………………………………..28
Chapter 3 Arsenate Sorption on Lithium/Aluminum Layered Double Hydroxide Intercalated by Chloride and Gibbsite: Sorption Isotherms, Envelopes and Spectroscopic Studies……………………………………………...29
3-1 Abstract………………………………………………………………29
3-2 Introduction………………………………………………………..30
3-3 Experimental Procedures……………………………………………….32
3-3-1 Preparation and Identification of Li/Al LDH-Cl and Gibbsite…...32
3-3-2 Sorption Isotherms………………………………………………..33
3-3-3 Sorption Envelopes……………………………………………….33
3-3-4 Arsenate EXAFS Analysis………………………………………..34
3-4 Results and Discussion…………………………………………………36
3-4-1 Characteristics of Li/Al LDH-Cl and Gibbsite…………………...36
3-4-2 Sorption Isotherms………………………………………………..36
3-4-3 Sorption Envelopes……………………………………………….38
3-4-4 Arsenate EXAFS Analysis………………………………………..42
3-4-5 Final Comprehension……………………………………………..49
3-5 Conclusions…………………………………………………………..50
Chapter 4 General Conclusions…………………………………………………….51
Chapter 5 References…………………………………………………………….52
dc.language.isoen
dc.subjectExtended X-ray absorption fine structure (EXAFS)en
dc.subjectArsenate sorptionen
dc.subjectLi/Al LDH-Clen
dc.subjectLien
dc.title以巨觀實驗及光譜分析探討砷酸鹽吸持在夾層為氯離子之鋰鋁層狀雙氫氧基化合物之機制zh_TW
dc.titleSorption of Arsenate on Lithium/Aluminum Layered Double Hydroxide Intercalated by Chloride: Macroscopic and Spectroscopic Studiesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林錕松,張大偉,何聖賓,李達源
dc.subject.keyword砷酸鹽吸持,夾層為氯化物之鋰鋁層狀雙氫氧基化合物,鋰,X光射線吸收邊緣延續光譜細微結構,zh_TW
dc.subject.keywordArsenate sorption,Li/Al LDH-Cl,Li,Extended X-ray absorption fine structure (EXAFS),en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2005-07-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
517.68 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved