Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38307
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔(Si-Chen Lee)
dc.contributor.authorYi-Yao Kuoen
dc.contributor.author郭懿瑤zh_TW
dc.date.accessioned2021-06-13T16:30:02Z-
dc.date.available2014-07-26
dc.date.copyright2011-07-26
dc.date.issued2011
dc.date.submitted2011-07-19
dc.identifier.citation[1] D. O. Hall & K.K. Rao. Photosynthesis, 6th ed. (1999)
[2] T.H. Attridge. Light and plant responses: a study of plant photophysiology and the
natural environment (1990)
[3] Jean M. Whatley and F.R. Whatley. Light and plant life (1980)
[4] J.W. Hart. Light and Plant Growth (1988)
[5] V. S. Rama Das. Photosynthesis: regulation under varying light regimes (2004).
[6] Chentao Lin. Blue light receptors and signal transduction. The plant cell,
Supplement 2002, S207-S225.
[7] Quail, P.H. An emerging molecular map of the phytochromes. Plant Cell Eviron.
20, 657-666 (1997).
[8] Ahmad, M., and Cashmore, A. R. HY4 gene of A. thaliana encodes a protein with
the characteristics of a blue-light photoreceptor. Nature 366, 162-166 (1993).
[9] Kendrick, R. E., and Kronenberg, G. H. M. Photomorphogenesis in plants, 2nd ed
72(1994).
[10] Briggs, W. R., and Huala, E. Blue-light photoreceptors in higher plants. Anno.
Rev. Cell Dev. Biol. 15, 33-63 (1999).
[11] Briggs, W. R., and Christie, J. M. Phototropins 1 and 2, versatile plant blue-light
receptors. Trend Plant Sci. 7, 204-210 (2002).
102
[12] Chi-Feng Chen .Effect of Narrow Bandwidth Infrared Radiation on Mungbean
Growth and Gene Expression(2007)
[13] Borror, Donald J.. Dictionary of Root Words and Combining Forms. (1960).
[14]Campbell, Neil A., Lawrence G. Mitchell, Jane B. Reece. Biology, 5th Ed.
Benjamin/Cummings Publ. Co., Inc. Menlo Park, CA. (plus earlier
editions)(1999)
[15]Campbell, Neil A., Lawrence G. Mitchell, Jane B. Reece. Biology: Concepts
and Connections, 3rd Ed. ?Benjamin/Cummings Publ. Co., Inc. Menlo Park, CA.
(plus earlier editions)(1999).
[16]Marchuk, William N. A Life Science Lexicon. Wm. C. Brown Publishers,
Dubuque, IA.(1992).
[17] R. H. Ritchie, Phys. Rev. 106, 874−881 (1957).
[18] H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
[19] C. J. Powell, J. B. Swan, Phys. Rev. 118, 640 (1960).
[20] William L. Barnes, Alain Dereux and Thomas W. Ebbesen, Nature (London) 424,
824 (2003).
[21] E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135-2136 (1968).
[22] Yi-Tsung Chang, Tzu-Hung Chuang, Ming-Wei Tsai, Lung-Chien Chen, and
Si-Chen Lee. Dispersion relation of Al/Si surface plasmon in hexagonally
ordered aluminum hole arrays. Journal of Applied Physics 101, 054305 (2007).
103
[23] Handbook of Instrumental Techniques for Analytical Chemistry, Ch. 15, edited
by C. P. Sherman Hsu.
[24] 'Academic Press'. PCR Protocols: A Guide to Methods and Applications. Innis
MA et al. (1990).
[25] 'Nucleic Acids Research, vol.30 no.6'. Real-time PCR in virology.
pp. 1292–1305. Mackay IM, Arden EK and Nitsche A (2002).
[26] Yi-Tsung Chang, Yi-Ting Wu, Jeng-Han Lee, Chia-Ming Liang, Chao-Ju Huang
and Si-Chen Lee.” Intensity Dependence of (1,0) and (1,1) Ag/SiO2 Surface
Plasmons in Ag/SiO2/Ag Plasmonic Thermal Emitter on Energy Distribution of a
Graybody Emitter”. 9th Nanotechnology Conference IEEE NANO 2009 Genoa,
Italy, July 26-30 2009 (Full paper).
[27] Bill Geroge, Peter Mclntyre 原著,翁瑞裕編譯.紅外線光譜分析法,高立
圖書有限公司, p.198, p.233~237(2001)
[28] Suk-Whan Hong and Elizabeth Vierling. The Plant Journal 27(1), 25-35(2001)
[29] Newton Graphic science magazine量子科學雜誌33號
[30] From Wikipedia, the free encyclopedia
[31] Effect of Temperature on the Activity of Carboxylases in Tropical and
Temperate GramineaeK. J. TREHARNE AND J. P. COOPERWelsh Plant
Breeding Station, AberystwythReceived 2 October 1968
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38307-
dc.description.abstract本研究的第一個目的,是設計一種紅外線發射器,利用其所發出的窄頻寬的紅外線去照射阿拉伯芥72小時,比較在阿拉伯芥受紅外光激發有反應的基因中,NPQ4和PSAK這兩個反應基因對哪個特定波段的紅外光最敏感,即哪個波段最能誘導反應基因作反應。而第二個實驗的目的,是採用特定波段的紅外光照射對光合作用中PEP酵素活性的影響,以試圖了解紅外光照射對光合作用的影響。本研究使用的紅外線發射器,是依據表面電漿子原理製作,此紅外光源結構是在矽基板上鍍上鉬金屬,再鍍上銀/二氧化矽/銀三層薄膜,而最上層的銀穿透週期排列的孔洞,藉由鉬金屬通電流加熱,此結構便會發出窄頻寬高功率的紅外光;第一個實驗中,由RT-PCR分析結果顯示,發射器波長在4.5μm的紅外光,對PSAK這個基因的激發最顯著;而NPQ4這個基因則是受到發射器波長在4.2μm的紅外光影響較大。第二個實驗結果中,發現紅外光會讓PEP酵素活性提升30~50%,並且隨著發射光強度越高而有較高的提升率。PEP酵素活性受到發射器波長在4.3, 5.0及5.9μm的紅外光照射有最顯著的提升。照射紅外光後,PEP酵素的活性都提升了,表示紅外光照射可能對C4和CAM植物中二氧化碳的固定有幫助,進而提升光合作用效率。zh_TW
dc.description.abstractThe purpose of this study is to study the infrared irradiation effect on the gene expression of Arabidopsis thaliana and the PEP activity in photosynthesis. The narrow bandwidth plasmonic thermal emitter with specific emission waveband were designed and used to irradiate Arabidopsis for 72 hours, in order to identify the specific wavelength that induces the gene expression the most, that is, the NPQ4 and PSAK genes. Infrared emitters used in this study are fabricated based on the principle of surface plasmon. The purpose of the second experiment is to understand the effect of narrow band infrared irradiation on PEP-carboxylase activity in photosynthesis. The heat is generated by sending electric current to the molybdenum film on silicon substrate. The infrared source can be achieved by heating the triple layer structure which consists of a SiO2 layer between two Ag films on the molybdenum film. The top Ag layer is perforated by periodic hole array, and the emission wavelength can be altered by changing the lattice constant and diameter of the hole arrays. By RT-PCR analysis, it is found that the gene PSAK responds the most after illumination by PTE with peak wavelength at 4.5μm, and the gene NPQ4 exhibits the largest response by PTE with peak wavelength at 4.2μm. The experiments indicate that the PEPC activity can be enhanced by about 30~50% after infrared illumination, and the larger emission intensity would cause larger increase of activity. The PTE with specific peak wavelength at 4.3, 5.0, and 5.9 μm significantly enhances the activity. In general, after infrared illumination under different wavelengths, the PEPC activity can be enhanced. It implies that IR illumination can improve the carbon fixation process on the plants of C4 and CAM, and promote the efficiency of photosynthesis.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:30:02Z (GMT). No. of bitstreams: 1
ntu-100-R98945032-1.pdf: 2863256 bytes, checksum: 3a98312a177073c9b01c78e8f835eb38 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsChapter 1 Introduction…………………………………………………..1
1.1 Plant photo-physiology…………………………………………1
1.2 Photosynthesis…………………………………………3
1.3 Purpose of this research……………………………8
1.4 Framework of the thesis………………………………………10
Chapter 2 Chapter 2 The Fundamentals of Plasmonic
Thermal Emitters………………………………………………………….12
2.1 The fundamentals of surface plasmons…………………..12
2.1.1 Surface plasmons on smooth surfaces…………………12
2.1.2 Surface plasmons on the surface with hole arrays…….18
2.1.3 Dispersion relation of surface plasmon in hexagonally
II
ordered hole arrays…………………………………...22
2.2 Process flow………………………………………………………..25
2.2.1 Fabrication processes of metal hole arrays……………..25
2.2.2 Fabrication processes of plasmonic thermal emitter….28
2.3 Measuring Systems……………………………………………...31
2.3.1 Introduction of FTIR………………………………………..31
2.3.2 Thermal emitter chamber…………………………………..33
Chapter 3 Experimental Materials and Methods…………...35
3.1 Plant material and experimental setup……………………35
3.1.1 Plant material………………………………………………...35
3.1.2 Experimental setup………………………………………….36
3.2 Experiment flow………………………………………………….41
3.3 Student’s T-test……………………………………………………43
3.4 Gene expression pattern analysis………………………...…45
3.4.1 RNA isolation……………………………………..............…45
3.4.2 RT-PCR principles and procedure……………………....46
Chapter 4 Gene Expression of Arabidopsis under Infrared
Irradiation with specific Band………….............49
4.1 Confirmed response genes........................................................49
III
4.2 Response genes expression of Arabidopsis illuminated
by 4~5um Infrared Light…......................................................50
4.2.1 Infrared exposure experiment#1(λp= 4.2μm)..............50
4.2.2 Infrared exposure experiment#2(λp= 4.5μm).. ...........52
4.2.3 Infrared exposure experiment#3(λp= 4.7μm)……….53
4.2.4 Infrared exposure experiment#4(λp= 4.9μm) ............ 54
4.2.5 Genotype results for 4~5μm specific wavelength PTE
……………..................................................................... .......... 55
4.3 The absorption spectra of Arabidopsis and its
Chlorophyll................................................................................. 56
4.4 Discussion…………….......................................................... 61.
Chapter 5 Effect of Narrow Bandwidth Infrared Radiation
on PEPC Activity in photosynthesis................................ 63
5.1 PEP carboxylase in photosynthesis……………...……… 63
5.2 C4 carbon fixation and C4 pathway ……………............... 65
5.3 Experimental Materials and Methods…………............... 69
5.4 Results and Discussion ……………..............……................ 71
5.4.1Results of OD340 by illuminated 4~6μm specific
waveband PTE, respectively .....……....…….…………… 71
IV
5.4.2 Results of OD340 by illuminated the 4~6um specific
waveband PTE again.....……....…….………………… 74
5.4.3 Temperature effect ..........................................................75
5.4.4 Results of OD340 by 3~5um broad band IR
irradiation............................................................................... 78
5.5 Discussion of PEPC activity................................................. 80
5.6 Analysis activity increase from different wavelengths
illumination and Discussion..................................................... 81
Chapter6 Conclusions ....................................................................... 90
Appendix I – Arabidopsis seed sterilization protocol .....................92
Appendix II – Arabidopsis seed planting protocol.....................93
Appendix III – RNA isolation protocol...........................................95
Appendix IV – T-test results of OD340 (PTEs at first round) ........ 97
Appendix V –T-test results of OD340 (PTEs at second round) .......98
Appendix VI –T-test results of OD340 (Heat treatment) ................99
Appendix VII –T-test results of OD340 (3~5um broad band).......100
References........................................................................................101
dc.language.isoen
dc.title窄頻寬紅外線照射對阿拉伯芥基因表現及光合作用中
PEP 酵素活性之影響
zh_TW
dc.titleEffect of Narrow Bandwidth Infrared Radiation on the
Gene Expression of Arabidopsis thaliana and PEPC
Activity in Photosynthesis
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝旭亮,阮雪芬
dc.subject.keyword窄頻寬紅外線,阿&#63781,伯芥基因,光合作用,PEP 酵素活性,zh_TW
dc.subject.keywordNarrow Bandwidth Infrared,Gene Expression of Arabidopsis thaliana,PEPC Activity,Photosynthesis,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2011-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved