請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38306完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾顯雄 | |
| dc.contributor.author | Pei-Che Chung | en |
| dc.contributor.author | 鐘珮哲 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:30:01Z | - |
| dc.date.available | 2010-07-19 | |
| dc.date.copyright | 2005-07-19 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-12 | |
| dc.identifier.citation | 曾敏南. 2001. 黑殭菌(Metarhizium anisopliae var. anisopliae)耐高溫突變菌株之篩選及其生理、病原性之探討. 國立台灣大學植物病理學研究所碩士論文. 106頁.
Abuodeh, R. O., Orbach, M. J., Mandel, M. A., Das, A., and Galgiani, J. N. 2000. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J. Infect. Dis. 181: 2106-2110. Ardon, O., Kerem, Z., and Hadar, Y. 1998. Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract. Can. J. Microbiol. 44: 676-680. Avalos, J., Geever, R. F., and Case, M. E. 1989. Bialaphos resistance as a dominant selectable marker in Neurospora crassa. Curr. Genet. 16: 369-372. Aver'yanov, A. A., Lapikova, V. P., Petelina, G. G., and Dzhavakhiya, V. G. 1989. Increased sensitivity of pigment mutants of Pyricularia oryzae to toxic excretions of rice leaves. Fiziol. Rast. (Moscow) 36: 1088-1095. Bateman, R. P., Carey, M., Moore, D., and Prior, C. 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann. Appl. Biot. 122: 145-152. Bell, A. A., Puhalla, J. E., Tolmsoff, W. J., and Stipanovic, R. D. 1976. Use of mutants to establish (+)-scytalone as an intermediate in melanin biosynthesis by Verticillium dahliae. Can. J. Microbiol. 22: 787-799. Bell, A. A. and Wheeler, M. H. 1986. Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopath. 24: 411-451. Benes, J. E. and Ritchie, D. F. 1984. Evidence for increased melanin content in dicarboximide-resistant strain of Monilinia fructicola. Phytopathology 74: 877 Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R., and Potrykus, I. 2002. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132: 506-510. Bloomfield, B. J., and Alexander, M. 1967. Melanins and resistance of fungi to lysis. J. Bacteriol. 93: 1276-1280. Brakhage, A. A., Langfelder, K., Wanner, G., Schmidt, A., and Jahn, B. 1999. Pigment biosynthesis and virulence. Contrib. Microbiol. 2: 205-215. Branden, R., Malmstrom, B. G., and Vanngard, T. 1973. The effect of fluoride on the spectral and catalytic properties of the three copper-containing oxidases. Eur. J Biochem. 36: 195-200. Buhr, T. L. and Dickman, M. B. 1997. Gene expression analysis during conidial germ tube and appressorium development in Colletotrichum trifolii. Appl. Environ. Microbiol. 63: 2378-2383. Bull, A. T. and Carter, B. L. 1973. The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. J. Gen. Microbiol. 75: 61-73. Butler, M. J. and Day, A. W. 1998. Fungal melanins: a review. Can. J. Microbiol. 44: 1115-1136. Butler, M. J., Lazarovits, G., Higgins, V. J., and Lachance, M. A. 1989. Identification of a black yeast isolated from oak bark as belonging to genus Phaeococcomyces sp. analysis of melanin produced by the yeast. Can. J. Microbiol. 35: 728-734. Caesar-Tonthat, T. C., Kloeke, F. V., Geesey, G. G., and Henson, J. M. 1995. Melanin production by a filamentous soil fungus in response to copper and localization of copper sulfide by sulfide silver staining. Appl. Environ. Microbiol. 61: 1968-1975. Campoy, S., Perez, F., Martin, J. F., Gutierrez, S., and Liras, P. 2003. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr. Genet 43: 447-452. Cantino, E. C. and Horenstein, E. A. 1955. The role of ketoglutarate and polyphenol oxidase in the synthesis of melanin during morphogenesis in Blastocladiella emersonii. Physiol. Plant. 8: 189-221. Cantone, F. A. and Vandenberg, J. D. 1999. Genetic transformation and mutagenesis of the entomopathogenic fungus Paecilomyces fumosoroseus. J. Invertebr. Pathol. 74: 281-288. Carley, H. E., Watson, R. D., and Huber, D. M. 1967. Inhibition of pigmentation in Aspergillus niger by dimethylsulfoxide. Can. J. Bot. 45: 1451-1453. Carzaniga, R., Fiocco, D., Bowyer, P., and O'Connell, R. J. 2002. Localization of melanin in conidia of Alternaria alternata using phage display antibodies. Mol. Plant Microbe Interact. 15: 216-224. Chen, X., Stone, M., Schlagnhaufer, C., and Romaine, C. P. 2000. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510-4513. Coca, M., Bortolotti, C., Rufat, M., Penas, G., Eritja, R., Tharreau, D., del Pozo, A. M., Messeguer, J., and San, S. B. 2004. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol. Biol. 54: 245-259. Combier, J. P., Melayah, D., Raffier, C., Gay, G., and Marmeisse, R. 2003. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol. Lett. 220: 141-148. Covert, S. F., Kapoor, P., Lee, M., Briley, A., and Nairn, C. J. 2001. Agrobacterium-mediated transformation of Fusarium circinatum. Mycol Res 105: 259-264. de Groot, M. J., Bundock, P., Hooykaas, P. J., and Beijersbergen, A. G. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839-842. Dean, R. A. 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35: 211-234. Dillen, W., DeClercq, J., Kapila, J., Zambre, M., Montagu, M. v., and Angenon, G. 2002. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J. 12: 1459-1463. dos Reis, M. C., Pelegrinelli Fungaro, M. H., gado Duarte, R. T., Furlaneto, L., and Furlaneto, M. C. 2004. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. J. Microbiol. Methods 58: 197-202. Edens, W. A., Goins, T. Q., Dooley, D., and Henson, J. M. 1999. Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. Appl. Environ. Microbiol. 65: 3071-3074. Elliot, M. L. 1995. Effect of melanin biosynthesis inhibiting compounds on Gaeumannomyces species. Mycologia 87: 370-374. Ellis, D. H. and Griffiths, D. A. 1974. The location and analysis of melanins in the cell walls of some soil fungi. Can. J. Microbiol. 20: 1379-1386. Ellis, D. H. and Griffiths, D. A. 1975. The fine structure of conidial development in the genus Torula. I. T. herbarum (Pers.) Link ex S. F. Gray and T. herbarum f. quaternella Sacc. Can. J. Microbiol. 21: 1661-1675. Fang, W., Zhang, Y., Yang, X., Zheng, X., Duan, H., Li, Y., and Pei, Y. 2004. Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J. Invertebr. Pathol. 85: 18-24. Filippova, S. N., Kuznetsov, V. D., and Zaslavskaya, P. L. 1987. Production of melanins by Streptomyces galbus as a response to the elevated temperature of its cultivation and melanin localization. Mikrobiologiya. 56: 710-712. Fogarty , R. V. and Tobin, J. M. 1996. Fungal melanins and their interaction with metals. Enzyme Microb. Technol. 19: 311-317. Fujii, I., Watanabe, A., Sankawa, U., and Ebizuka, Y. 2001. Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem. Biol. 8: 189-197. Fullner, K. J. and Nester, E. W. 1996. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol. 178: 1498-1504. Gadd, G. M. and De Rome, L. 1988. Biosorption of copper by fungal melanins. Appl. Microbiol. Biotechnol. 29: 610-617. Gadd, G. M., Gray, D. J., and Newby, P. J. 1990. Role of melanin in fungal biosorption of tributyltin chloride. Appl. Microbiol. Biotechnol. 34: 16-121. Galhaup, C. and Haltrich, D. 2001. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl. Microbiol. Biotechnol. 56: 225-232. Gardiner, D. M. and Howlett, B. J. 2004. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr. Genet. 45: 249-255. Gelvin, S. B. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol Plant Mol. Biol. 51: 223-256. Gregory, K. F. and Huang, J. C. 1964. Tyrosinase inheritance in Streptomyces scabies. II. Induction of tyrosinase deficiency by acridines dyes. J Bacteriol. 87: 1287-1294. Heale, J. B. and Isaac, I. 1964. Dark pigment formation in Verticillium albo-atrum. Nature 202: 412-413. Hegnauer, H., Nyhlen, L. E., and Rast, D. M. 1985. Ultrastructure of native and synthetic Agaricus bisporus melanins-implications as to the compartmentation of melanogenesis in fungi. Exp. Mycol. 9: 221-229. Henson, J. M., Butler, M. J., and Day, A. W. 1999. The dark side of the mycelium : Melanins of Phytopathogenic Fungi. Annu. Rev. Phytopathol. 37: 447-471. Hermann, T. E., Kurtz, M. B., and Champe, S. P. 1983. Laccase localized in hulle cells and cleistothecial primordia of Aspergillus nidulans. J Bacteriol. 154: 955-964. Hignett, R. C. and Kirkham, D. S. 1967. The role of extracellular melanoproteins in Venturia inaequalis in host susceptibility. J Gen Microbiol. 48: 269-275. Hignett, R. C., Roberts, A. L., and Carder, J. H. 1978. The properties and extracellular enzymes of Venturia inequalis and their association with loss of virulence of the fungus in culture. J. Gen. Microbiol. 110: 67-75. Hong, T. D., Jenkins, N. E., Ellis, R. H., and Moore, D. 1998. Limits to the negative logarithmic relationship between moisture content and longevity in Metarhizium flavoviride. Ann. Bot. 81: 625-630. Horowitz, N. H. and Shen, S. C. 1952. Neurospora tyrosinase. J Biol. Chem. 197: 513-520. Howard, R. J., Ferrari, M. A., Roach, D. H., and Money, N. P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. U. S. A. 88: 11281-11284. Howard, R. J. and Valent, B. 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50: 491-512. Ignoffo, C. M. and Garcia, C. 1992. Influence of conidial color on inactivation of several entomogenous fungi(Hyphomycetes) by simulated sunlight. Ann. Entomol. Soc. Am. 21: 913-917. Jacobson, E. S. and Hong, J. D. 1997. Redox buffering by melanin and Fe(II) in Cryptococcus neoformans. J. Bacteriol. 179: 5340-5346. Jacobson, E. S., Hove, E., and Emery, H. S. 1995. Antioxidant function of melanin in black fungi. Infect. Immun. 63: 4944-4945. Jacobson, E. S., Jenkins, N. D., and Todd, J. M. 1994. Relationship between superoxide dismutase and melanin in a pathogenic fungus. Infect. Immun. 62: 4085-4086. Jacobson, E. S. and Tinnell, S. B. 1993. Antioxidant function of fungal melanin. J Bacteriol. 175: 7102-7104. Kawamura, C., Moriwaki, J., Kimura, N., Fujita, Y., Fuji, S., Hirano, T., Koizumi, S., and Tsuge, T. 1997. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Mol. Plant Microbe Interact. 10: 446-453. Kawamura, C., Tsujimoto, T., and Tsuge, T. 1999. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol. Plant Microbe Interact. 12: 59-63. Kimura, N. and Tsuge, T. 1993. Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J. Bacteriol. 175: 4427-4435. Kollias, N., Sayre, R. M., Zeise, L., and Chedekel, M. R. 1991. Photoprotection by melanin. J. Photochem. Photobiol. B 9: 135-160. Kroken, S., Glass, N. L., Taylor, J. W., Yoder, O. C., and Turgeon, B. G. 2003. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. U. S. A. 100: 15670-15675. Kubo, Y., Furusawa, I., and Yamamoto, M. 1984. Regulation of melanin biosynthesis during appressorium formation in Colletotrichum lagenarium. Exp. Mycol. 8: 364-369. Kuo, K. C. and Hoch, H. C. 1995. Visualization of the extracellular matrix surrounding pycnidiospores, germlings, and appressoria of Phyllosticta ampelicida. Mycologia 87: 759-771. Kurtz, M. B. and Champe, S. P. 1981. Dominant spore color mutants of Aspergillus nidulans defective in germination and sexual development. J. Bacteriol. 148: 629-638. Kurtz, M. B. and Champe, S. P. 1982. Purification and characterization of the conidial laccase of Aspergillus nidulans. J. Bacteriol. 151: 1338-1345. Langfelder, K., Jahn, B., Haase, G., Schmidt, A., Wanner, G., and Brakhage, A. A. 1998. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med. Microbiol. Immunol. (Berl) 187: 79-89. Langfelder, K., Streibel, M., Jahn, B., Haase, G., and Brakhage, A. A. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38: 143-158. Larsson, B. and Tjalve, H. 1979. Studies on the mechanism of drug-binding to melanin. Biochem. Pharmacol. 28: 1181-1187. Leclerque, A., Wan, H., Abschutz, A., Chen, S., Mitina, G. V., Zimmermann, G., and Schairer, H. U. 2004. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr. Genet 45: 111-119. Lee, T., Yun, S. H., Hodge, K. T., Humber, R. A., Krasnoff, S. B., Turgeon, G. B., Yoder, O. C., and Gibson, D. M. 2001. Polyketide synthase genes in insect- and nematode-associated fungi. Appl. Microbiol. Biotechnol. 56: 181-187. Lockwood, J. L. 1960. Lysis of mycelia of plant pathogenic fungi by natural soil. Phytopathology. 50: 787-789. Lomer, C. J., Bateman, R. P., Godonou, I., Kpindou, D., Shah, P., Paraiso, A., and Prior, C. 1993. Field infection of Zonocerus variegatus following application of an oil based formulation of Metarhizium flavoviride conidia. Biocontrol Sci. Technol. 3: 337-346. Marr, C. D. 1979. Laccase and tyrosinase oxidation of spot test reagents. Mycotaxon 9: 244-276. Martin, J. P. and Haider, K. 1980. A comparison of the use of phenolase and peroxidase for the synthesis of model humic acid-type polymers. Soil Sci. Soc. Am. J. 983-988. Mason, H. S. 1949. The chemistry of melanin; mechanism of the oxidation of catechol by tyrosinase. J. Biol. Chem. 181: 803-812. Matewele, P., Trinci, A. P. J., and Gillespie, A. T. 1994. Mutants of entomopathogenic fungi that germinate and grow at reduced water activities and reduced relative humidities are more virulent to Nephotettix virescens (green leafhopper) than the parental strains. Mycol. Res. 98: 1329-1333. Mayer, A. M. and Harel, E. 1979. Polyphenol oxidases in plants. Phytochemistry 18: 193-215. Mendoza, C. G., Leal, J. A., and Novaes-Ledieu, M. 1979. Studies of the spore walls of Agaricus bisporus and Agaricus campestris. Can. J. Microbiol. 25: 32-39. Meyer, V., Mueller, D., Strowig, T., and Stahl, U. 2003. Comparison of different transformation methods for Aspergillus giganteus. Curr. Genet 43: 371-377. Michielse, C. B., Hooykaas, P. J., van den Hondel, C. A., and Ram, A. F. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. Michielse, C. B., Salim, K., Ragas, P., Ram, A. F., Kudla, B., Jarry, B., Punt, P. J., and van den Hondel, C. A. 2004. Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol. Genet. Genomics 271: 499-510. Mikosch, T. S., Lavrijssen, B., Sonnenberg, A. S., and van Griensven, L. J. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr. Genet. 39: 35-39. Mirchink, T. G., Kashinka, G. B., and Abaturov, Y. D. 1968. Resistance of the dark coloured fungi Stemphylium botryosum WALLR and Cladosporium cladosporoides(FRIES) de Vries to gamma irradiation. Mikrobiologiya 37: 865-869. Money, N. P. 1997. Mechanism linking cellular pigmentation and pathogenicity in rice blast disease. Fungal. Genet. Biol. 22: 151-152. Morley-Daries, I., Moore, D., and Prior, C. 1995. Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycol. Res. 100: 31-38. Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., and Kang, S. 2001. Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91: 173-180. Nester, E., Gordon, M. P., and Kerr, A., 2005. Agrobacterium tumefaciens from plant pathology to biotechnology. The American Phytopathological Society. 320pp. Nicolaus, R. A., Piattelli, M., and Fattorusso, E. 1964. The structure of melanins and melanogenesis. IV. On some natural melanins. Tetrahedron 20: 1163-1172. Nosanchuk, J. D. and Casadevall, A. 1997. Cellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding. Infect. Immun. 65: 1836-1841. Nyhus, K. J., Wilborn, A. T., and Jacobson, E. S. 1997. Ferric iron reduction by Cryptococcus neoformans. Infect. Immun. 65: 434-438. Old, K. M., and Robertson, W. M. 1970. Effects of lytic enzymes and natural soil on the fine structure of conidia of Cochliobolus sativus. Trans. Br. Mycol. Soc. 54: 343-350. Page, W. J. and Shivprasad, S. 1995. Iron binding to Azotobacter salinestris melanin, iron mobilization and uptake mediated by siderophores. Biometals 8: 59-64. Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., and Sannia, G. 2000. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 66: 920-924. Parisot, D., Dufresne, M., Veneault, C., Lauge, R., and Langin, T. 2002. clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Mol. Genet. Genomics 268: 139-151. Pawelek, J. M. and Korner, A. M. 1982. The biosynthesis of mammalian melanin. Am. Sci. 70: 136-145. Pechak, D. G. and Crang, R. E. 1979. Observations on melanin synthesis in the black yeast Aureobasidium pullulans. Micron 10: 208- Pezet, R. 1998. Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea. FEMS Microbiol. Letters 167: 203-208. Piers, K. L., Heath, J. D., Liang, X., Stephens, K. M., and Nester, E. W. 1996. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. U. S. A. 93: 1613-1618. Pitt, J. T., and Hocking, A. D. 1985. Fungi and Food Spoilage. pp 32-50. Prota, G., D'Ischia, M., and Napolitano, A. 1988. The chemistry of melanins and related metabolites, in 'The Pigmentary System'. Oxford University Press. Ramberg, J. E. and McLaughlin, D. J. 1980. Ultrastructural study of promycelial development and basidiospore initiation in Ustilago maydis. Can. J. Bot. 58: 1548-1561. Rast, D. M., Stussi, H., Hegnauer, H., and Nyhlen, L. E. 1981. Melanins. In The Fungal Spore: Morphogenetic Controls, ed. G. Turian, H. R. Hohl, pp. 507-31. New York: Academic. Ray, A. C. and Eakin, R. E. 1975. Studies on the biosynthesis of aspergillin by Aspergillus niger. Appl. Microbiol. 30: 909-915. Rehnstrom, A. L. and Free, S. J. 1997. The isolation and characterization of melanin-deficient mutants of Monilinia fructicola. Physiol. Mol. Plant Pathol. 49: 321-330. Rho, H. S., Kang, S., and Lee, Y. H. 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells 12: 407-411. Rizzo, D. M., Blanchette, R. A., and Palmer, M. A. 1992. Biosorption of metal compounds by Armillaria rhizomorphs. Can. J. Bot. 70: 1515-1520. Robeson, D., Strobel, G., Matusumoto, G. K., Fisher, E. L., Chen, M. H., and Clardy, J. 1984. Alteichin: an unusual phytotoxin from Alternaria eichorniae, a fungal pathogen of water hyacinth. Experientia 40: 1248-1250. Rolland, S., Jobic, C., Fevre, M., and Bruel, C. 2003. Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr. Genet. 44: 164-171. Salas, M. G., Park, S. H., Srivatanakul, M., and Smith, R. H. 2002. Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 2001:701–705 2001: 701-705. Salas, S. D., Bennett, J. E., Kwon-Chung, K. J., Perfect, J. R., and Williamson, P. R. 1996. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med. 184: 377-386. Sarna, T., Hyde, J. S., and Swartz, H. M. 1976. Ion-exchange in melanin: an electron spin resonance study with lanthanide probes. Science 192: 1132-1134. Scheel, T., Holker, U., Ludwig, S., and Hofer, M. 1999. Evidence for and expression of a laccase gene in three basidiomycetes degrading humic acids. Appl. Microbiol. Biotechnol. 52: 66-69. Sealy, R. C., Hyde, J. S., Felix, C. C., Menon, I. A., Prota, G., Swartz, H. M., Persad, S., and Haberman, H. F. 1982. Novel free radicals in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 79: 2885-2889. Seiji, M. and Iwashita, S. 1965. Enzyme inactivation by ultraviolet light and protective effect of melanin. J. Biochem. (Tokyo) 57: 457-459. Serediuk, L. S. and Iurchak, L. D. 1971. Allelopathic effects of melanins of Stachybotrys alternans. Prikl. Biokhim. Mikrobiol. 7: 174-177. Shen, B. 2003. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7: 285-295. Siehr, d. J. 1981. Melanin biosynthesis in Aureobasidium pullulans. J. Coatings Tech. 53: 23-25. Simon, L. T., Bishop, D. S., and Hooper, G. R. 1979. Ultrastructure and cytochemical localization of laccase in two strains of Leptosphaerulina briosiana (Pollaci) Graham and Luttrell. J. Bacteriol. 137: 537-544. Stussi, H. and Rast, D. M. 1981. The biosynthesis and possible function of γ-glutaminyl-4-dihydroxybenzene in Agaricus bisporus. Phytochemistry 20: 2347. Sullivan, T. D., Rooney, P. J., and Klein, B. S. 2002. Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot. Cell 1: 895-905. Swan, G. A. 1973. Structure, chemistry, and biosynthesis of the melanins. Fortschr. Chem. Org. Naturst. 31: 521-582. Takahara, H., Tsuji, G., Kubo, Y., Yamamoto, M., Toyoda, K., Inagaki, Y., Ichinose, Y., and Shiraishi, T. 2004. Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J. Gen. Plant Pathol. 70: 93-96. Takano, Y., Kubo, Y., Kawamura, C., Tsuge, T., and Furusawa, I. 1997. The Alternaria alternata melanin biosynthesis gene restores appressorial melanization and penetration of cellulose membranes in the melanin-deficient albino mutant of Colletotrichum lagenarium. Fungal. Genet. Biol. 21: 131-140. Tarasov, B. P., Yurlova, N. A., and Elinov, N. P. 1977. Melanins formed by a culture of Aureobasidium pullulans . Chem. Natural Compd USSR 216-221. Tetsch, L., Bend, J., Janssen, M., and Holker, U. 2005. Evidence for functional laccases in the acidophilic ascomycete Hortaea acidophila and isolation of laccase-specific gene fragments. FEMS Microbiol. Lett. 245: 161-168. Thathachari, Y. T. and Blois, M. S. 1969. Physical studies on melanins. II. X-ray diffraction. Biophys. J 9: 77-89. Tolmstoff, W. 1976. Report of the disease and pathogen physiology committee-1975. In proceedings of the Beltwide Cotton production Research Conferences January 5-7,Las Vegas, Nev. Edited by J.M. Brown: 9. Tsuji, G., Fujii, S., Fujihara, N., Hirose, C., Tsuge, S., Shiraishi, T., and Kubo, Y. 2003. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J. Gen. Plant Pathol. 69: 230-239. Turner, W. B. and Aldridge, D. C. 1983. Fungal Metabolites. New York: Academic 631. Wang, H. L., Kim, S. H., and Breuil, C. 2001. A scytalone dehydratase gene from Ophiostoma floccosum restores the melanization and pathogenicity phenotypes of a melanin-deficient Colletotrichum lagenarium mutant. Mol. Genet. Genomics 266: 126-132. Wang, Y., Aisen, P., and Casadevall, A. 1995. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect. Immun. 63: 3131-3136. Wang, Y. and Casadevall, A. 1994. Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl. Environ. Microbiol. 60: 3864-3866. Wheeler, M. H. 1983. Comparisons of fungal melanin biosynthesis in ascomycetous, imperfect and asidiomycetous fungi. Trans. Br. Mycol. Soc. 81: 29-36. Wheeler, M. H., Tolmsoff, W. J., Bell, A. A., and Mollenhauer, H. H. 1978. Ultrastructural and chemical distinction of melanins formed by Verticillium dahliae from (+)-scytalone, 1,8-dihydroxynaphthalene, catechol, and L-3,4-dihydroxyphenylalanine. Can. J. Microbiol. 24: 289-297. Wheeler, M. H., Tolmsoff, W. J., and Meola, S. 1976. Ultrastructure of melanin formation in Verticillium dahliae with (+)-scytalone as a biosynthetic intermediate. Can. J Microbiol. 22: 702-711. White, L. P. 1958. Melanin: a naturally occurring cation exchange material. Nature 182: 1427-1428. Yadav, G., Gokhale, R. S., and Mohanty, D. 2003. SEARCHPKS: A program for detection and analysis of polyketide synthase domains. Nucleic Acids Res. 31: 3654-3658. Yamaguchi, I., Sekido, S., Seto, H., and Misato, T. 1983. Cytotoxic effect of 2-hydroxyjuglone a metabolite in the branched pathway of melanin biosynthesis in Pyricularia oryzae. J. Pestic. Sci. Int. Ed. 8: 545-550. Yoder, O. C. and Turgeon, B. G. 1996. Molecular-genetic evaluation of fungal molecules for roles in pathogenesis to plants. J. Genet. 75: 425-440. Zhdanova, N. N. and Pokhodenko, V. D. 1973. Possible participation of melanin pigment in protecting the fungal cell from desiccation. Mikrobiologiia 42: 848-853. Zhdanova, N. N., Melezhik, A. V., and Vasilevskaya, A. I. 1980. Thermostability of some melanin-containing fungi. Biol. Bull. Acad. Sci. U.S.S.R. 7: 305-310. Zhdanova, N. M., Zakharenko, V. O., Vasylevs’ka, A. I., Shkol’nyi, O. T., Nakonechna, L. T., and Artyshkova, L. V. 1994. Peculiarities of soil mycobiota composition in Chernobyl NPP. Ukr. Bot. Zh. 51: 134-143. Zwiers, L. H. and De Waard, M. A. 2001. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr. Genet 39: 388-393. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38306 | - |
| dc.description.abstract | 於田間應用昆蟲寄生菌來防治害蟲常遇到如高溫、乾燥、高UV、輻射等逆境,降低成活率,因而減損其防治效率,據以往之文獻報導,黑色素對於生物不同物種之抗逆境或致病能力有極為密切之關係,故為克服此種瓶頸,乃嘗試應用基因重組技術將其他會產生黑色素真菌之黑色素生合成基因(polyketide synthase、scytalone dehydratase、1,3,8-trihydroxynaphthalene reductase)轉殖到昆蟲寄生菌(黑殭菌Metarhizium anisopliae var. anisopliae、白殭菌Beauveria bassiana、擬青黴菌Paecilomyces javanicus),再探討其耐逆境及侵染昆蟲寄主之能力。本試驗首先應用簡併式引子對(degenerate primers)利用聚合酶鏈鎖反應(PCR,polymerase chain reaction)之技術,以磚格孢菌(Alternaria alternata)之genomic DNA作為模板增幅出polyketide synthase(長約700 bp),scytalone dehydratase(長約250 bp),1,3,8-trihydroxynaphthalene reductase(長約750 bp)基因之核酸片段,再以DIG標識當為探針,篩檢由研究室所建構之磚格孢菌(A. alternata)基因體之Fosmid library,並對polyketide synthase與1,3,8-trihydroxynaphthalene reductase呈正反應之選殖株將其挑出,增殖並萃取genomic DNA,利用散彈槍方式建構DNA library(shotgun DNA library),進行定序組合,最後將長41279 bp之fosmid選殖株完全解序,此DNA序列可轉錄至少六個基因:polyketide synthase、1,3,8-trihydroxynaphthalene reductase與4個未知功能的基因,但所預期之基因scytalone dehydratase並不包括在內,此將進一步以限制酶剪切、南方氏電泳分析,並期望可得到預期之結果,此基因預期應座落於polyketide synthase與1,3,8-trihydroxynaphthalene reductase之間;此外也應用RACE,將polyketide synthase、scytalone dehydratase、1,3,8-trihydroxynaphthalene reductase等基因之全長度解序,其開放讀架(open reading frame)之全長度分別為6483 bp、519 bp、801 bp。並建構pCAM-GF-GT-Scy(以GFP作為selection marker,內建有scytalone dehydratase 之full length cDNA)、pCAM-GH-GT-Tri(以hygromycinr作為selection marker,及1,3,8-trihydroxynaphthalene reductase之full length cDNA)Ti-plasmid 轉型載體(binary vector),以電穿孔儀將其送入農桿菌(Agrobacterium tumefaciens EHA105 strain)中,將利用農桿菌轉型法將目標基因轉入昆蟲寄生菌:黑殭菌、白殭菌、擬青黴菌,選出轉型株,並以南方氏、北方氏點墨雜合,配合綠色螢光融合蛋白(Green fluorescence fusion protein, GFP)檢測,目前已成功將此等黑色素生合成基因轉入昆蟲寄生菌染色體,初步觀察黑殭菌之轉型株,以螢光顯微鏡可以觀察到孢子與菌絲表現綠色螢光,並且於光學顯微鏡下可看到與野生型不同之黑色菌絲。後續將進行轉型株之基因型與表現型之確認以及生物活性檢測。 | zh_TW |
| dc.description.abstract | Application of entomopathogenic fungi to control insect pests in the field was usually not effective as anticipated due to the stressed and harsh environmental conditions such as high temperature, desication and high sunlight UV radiation. To circumvent the obstacles encountered, we attempt to transform the prevalent entomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae var. anisopliae, and Paecilomyces javanicus with melanin biosynthesis genes: polyketide synthase, scytalone dehydratase, 1,3,8-trihydroxynaphthalene reductase, melanin proved characterized with antistress and corelated with virulent capacity of some pathogenic fungi. Part of polyketide synthase, scytalone dehydratase, 1,3,8-trihydroxynaphthalene reductase gene fragments with length of 700, 250, 750 bp, respectively were amplified by polymerase chain reaction(PCR)using degenerate primers from Alternaria alternata, and being labeled with DIG as probes to screen the Fosmid library. The library was constructed based on the genomic DNA extracted from the mycelium of the dematiaceous A. alternata , which has been documented possessing three melanin biosynthesis genes clustered in a 30 Kb DNA contig. The Fosmid clones exhibiting positive signal against polyketide synthase and 1,3,8-trihydroxynaphthalene reductase were selected to construct shotgun library for sequencing and assembling. The assembled 41279 bp contig blastingX with nr NCBI revealed the encoded polyketide synthase, 1,3,8-trihydroxynaphthalene reductase plus four hypothetical proteins genes, flanked with function unknown DNA sequences. Unexpectedly, the scytalone dehydratase gene was not discovered within the contigs. However, all the full open reading frame of polyketide synthase, scytalone dehydratase, 1,3,8-trihydroxynaphthalene reductase genes were cloned and their full-length open reading frames accessed by rapid amplification of cDNA ends(RACE). To further ascertain the existance of scytalone dehydratase gene, the specific Fosmid clones DNA will be restricted by an array of enzymes and verified by Southern blotting. We also constructed Ti-plasmid binary vectors, pCAM-GF-GT-Scy pCAM-GH-GT-Tri, which harboured GFP and scytalone dehydratase, hygromycinr and 1,3,8-trihydroxynaphthalene reductase gene insertions respectively, which has been cotransfered into the targeted entomopathogenic fungi B. beauveria, M. anisopliae var. anisopliae and P. javanicus by Agrobacterium tumefaciens Ti-plasmid mediated transformation using electroporation device. Preliminarly light and fluorescent microscopy showed the successful transformation as evident by the green fluorescent conidia and mycelium, or the darkened mycelium, which otherwise have not been observed in wild types. Experiments with respect to the phenotype、genotype and bioassay are undergoing and expected to come up with promising outcome. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:30:01Z (GMT). No. of bitstreams: 1 ntu-94-R92633002-1.pdf: 3106288 bytes, checksum: eb497d70753e692e26f737aab0423eee (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要...................................................................................................................1
英文摘要.................................................................................................................3 前言................................................................................................................5 壹、前人研究..............................................................................................7 一、黑色素之分佈位置........................................................................................7 二、真菌黑色素之功能................................................................................8 (一)保護並阻止輻射之傷害......................................................................8 (二)抵抗酵素的分解...........................................................................9 (三)抵抗極端的溫度................................................................................9 (四)與金屬離子黏附............................................................................10 (五)微生物黑色素之氧化還原能力........................................................10 (六)真菌黑色素是致病因子..................................................................11 (七)真菌黑色素是否可抵禦乾燥環境........................................................13 (八)對於殺真菌劑具有抗性................................................................14 三、真菌黑色素之生合成...........................................................................14 (一)DOPA melanin....................................................................................... 15 (二)GDHB melanin.......................................................................................16 (三)Catechol melanin.................................................................................. 17 (四)DHN melanin........................................................................................... 18 四、Agrobacterium mediated transformation............................................20 五、蟲生真菌.........................................................................................................25 貳、材料與方法..............................................................................................27 一、DNA level.......................................................................................................27 (一)基因體 DNA萃取............................................................................................ 27 (二)黑色素形成相關基因選殖................................................................................28 (三)建構Fosmid library.........................................................................................33 (四)DIG標定之探針..............................................................................................38 (五)南方氏雜合................................................................................................38 (六)Fosmid colony hybridization..........................................................................42 (七)Colony hybridization..................................................................................43 (八)挑選正反應訊號之選殖株建構shotgun library及解序...............................45 二、RNA level.............................................................................................................46 (一)RNA 萃取........................................................................................................46 (二)反轉錄聚合酵素鏈鎖反應RT-PCR................................................................48 (三)RACE(Rapid Amplification of cDNA Ends).............................................49 三、Agrobacterium mediated transformation.................................................53 (一)電穿孔competent cell之製備與電穿孔之流程..............................54 (二)Construction of binary vector-pCAM-GH-GT-Tri...................................55 (三)Construction of binary vector-pCAM-GF-GT-Scy...................................59 (四)Using electroporation method to transform Agrobacterium strain.............62 (五)蟲生真菌之來源與培養...................................................................................62 (六)Genetic transformation........................................................................62 參、結果.........................................................................................................64 一、DNA level..................................................................................................64 (一) 基因體DNA萃取...........................................................................................64 (二) 黑色素形成相關基因選殖.........................................................................64 (三)建構Fosmid library........................................................................65 (四)DIG標定之探針.........................................................................65 (五)南方氏雜合..............................................................................65 (六)Fosmid colony 南方氏雜合........................................................................66 (七)Colony hybridization..................................................................................66 (八)挑選正反應訊號之選殖株建構shotgun library................................66 二、RNA level...........................................................................................67 (一)RNA extraction...........................................................................................67 (二)反轉錄聚合酵素鏈鎖反應RT-PCR...............................................................67 (三)RACE(Rapid Amplification of cDNA Ends)............................................67 三、Agrobacterium mediated transformation....................................................68 (一)Construction of binary vector-pCAM-GH-GT-Tri....................................68 (二)Construction of binary vector-pCAM-GF-GT-Scy.....................................69 (三)Using electroporation method to transform Agrobacterium strain........70 (四)Genetic transformation...................................................................................70 肆、討論..............................................................................................................72 一、Alternaria alternata生合成黑色素之相關基因.................................................72 二、Fosmid library 正反應選殖株解序結果與黑色素生合成基因分析................74 三、黑色素合成相關基因的cDNA全長.................................................................75 四、以Agrobacterium tumefaciens作為轉型之工具..............................................75 五、以農桿菌作為真菌轉型之媒介....................................................................76 六、未來展望................................................................................................79 伍、圖.............................................................................................................80 陸、參考文獻.................................................................................................103 柒、附錄................................................................................................................117 捌、附圖.........................................................................................................123 圖序 圖一、電泳磚格孢菌(Alternaria alternata)之基因體核酸,以確認其長度。…………………………………………………………………………81 圖二、以polyketide synthase、scytalone dehydratase、1,3,8-trihydroxynaphthalene reductase基因保守性序列,設計簡併式引子對,進行聚合酶聯鎖反應增幅所得預期之長度核酸產物電泳圖。…………………………………………82 圖三、建構磚格孢菌(Alternaria alternata)Fosmid library回收40 Kb DNA片段之濃度測試電泳圖。……………………………………………………..83 圖四、磚格孢菌(Alternaria alternata)基因體DNA以限制酶PstI、KpnI、EcoRI、HindIII進行酵解,並以polyketide synthase作為探針,進行南方氏雜合之壓片結果。…………………………………………………………………84 圖五、磚格孢菌(Alternaria alternata)基因體DNA以限制酶EcoRI、HindIII進行酵解,以scytalone dehydratase作為探針,進行南方氏雜合之壓片結果。…………………………………………………………………………..85 圖六、磚格孢菌(Alternaria alternata)基因體DNA以限制酶PstI、KpnI、EcoRI、HindIII進行酵解,以1,3,8-trihydroxynaphthalene reductase作為探針,進行南方氏雜合之結果。…………………………………………………..86 圖七、Fosmid sub-clones of Alternaria alternata selected after Southern hybridization……………………………………………………………...87 圖八、以DIG標示polyketide synthase、1,3,8-trihydroxynaphthalene reductase之核酸探針,以南方氏雜合法進行兩次篩檢所建構之磚格孢菌(Alternaria alternata)之Fosmid library。……………………………………………….88 圖九、建構shotgun library並解序之後,得到aaf01018E1的全長度序列41279bp………………………………………………………………………89 圖十、磚格孢菌(Alternaria alternata)之polyketide synthase基因比對Prodom資料庫所界定之功能性區域(functional motif)。………………………….90 圖十一、Alternaria alternata之RNA萃取與scytalone dehydratase RACE之結果…………………………………………………………………………..91 圖十二、1,3,8-trihydroxynaphthalene reductase進行RACE之結果…………….92 圖十三、經由RACE所獲知之scytalone dehydratase之全長度711bp之基因。………………………………………………………………………..93 圖十四、經由RACE所獲知之1,3,8-trihydroxynaphthalenereductase之全長度1029bp之基因。………………………………………………………….94 圖十五、所建構之pCAM-GH-GT-Tri(binary vector)利用限制酶剪接以確認黏合產物是否正確之電泳圖。………………………………………………..95 圖十六、所建構用以攜帶Hygr、1,3,8-trihydroxynaphthalene reductase基因之pCAM-GH-GT-Tri binary vector。……………………………………..96 圖十七、所建構之pCAM-GF-GT-Scy (binary vector)利用限制酶剪接以確認黏合產物是否正確之電泳圖。………………………………………………….97 圖十八、所建構用以攜帶GFP、scytalone dehydratase基因之pCAM-GF-GT-Scy binary vector。…………………………………………………………….98 圖十九、黑殭菌(Metarhizium anisopliae var. anisopliae)以scytalone dehydratase與1,3,8-trihydroxynaphthalene reductase基因轉型之表現型特徵光學鏡檢。…………………………………………………………………………99 圖二十、螢光顯微鏡鏡檢轉入scytalone dehydratase與1,3,8-trihydroxynaphthalene reductase兩基因之黑殭菌轉型株與野生株。……………………………………………………………100 圖二十一、黑殭菌與擬青黴菌野生株與轉型株之表現型。…………………….101 圖二十二、比較五種不同真菌催化黑色素生合成前趨物之polyketide synthase之功能性區域。…………………………………………………………102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物防治 | zh_TW |
| dc.subject | 黑色素 | zh_TW |
| dc.subject | 黑色素生合成相關基因 | zh_TW |
| dc.subject | 農桿菌轉殖法 | zh_TW |
| dc.subject | 蟲生真菌 | zh_TW |
| dc.subject | 抗逆境 | zh_TW |
| dc.subject | Agrobacterium-mediated-transformation | en |
| dc.subject | biocontrol | en |
| dc.subject | antistress | en |
| dc.subject | entomopathogenic fungi | en |
| dc.subject | melanin | en |
| dc.subject | melanin synthesis related genes | en |
| dc.title | 轉殖蟲生真菌黑色素生合成基因以增加其逆境之抗性 | zh_TW |
| dc.title | Transformation of entomopathogenic fungi with melanin biosynthesis genes to enhance anti-stress capability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔣丙煌,楊平世,劉瑞芬,陳昭瑩 | |
| dc.subject.keyword | 黑色素,黑色素生合成相關基因,農桿菌轉殖法,蟲生真菌,抗逆境,生物防治, | zh_TW |
| dc.subject.keyword | melanin,melanin synthesis related genes,Agrobacterium-mediated-transformation,entomopathogenic fungi,antistress,biocontrol, | en |
| dc.relation.page | 130 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
