請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38289完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林輝政 | |
| dc.contributor.author | SHIH-WEI LIN | en |
| dc.contributor.author | 林世偉 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:29:36Z | - |
| dc.date.available | 2005-07-20 | |
| dc.date.copyright | 2005-07-20 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-12 | |
| dc.identifier.citation | 1、 Cornell, W.D., Cieplak, P., Bayly, C.I., et al., 1995. A second generation
force-field for the simulation of proteins, nucleic-acids, and organic- molecules. Journal of American Chemical Society 117, 5179–5197. 2、 Shen, L., and Li, J., 2004, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B 69,pp. 045414 (1-10). 3、 Li, C., and Chou, T. W., 2003, A Structural mechanics approach for the analysis of the carbon nanotubes, Int. J. Solids Struct. 40, pp.2487-2499. 4、 Dresselhaus, M.S., Dresselhaus, G., Saito, R., 1995. Physics of carbon nanotubes. Carbon 33, 883. 5、 Qian, D., Wagner, G. J., Liu, W. K., Yu, M.F., and Ruoff, R.S., 2002, Mechanics of carbon nanotubes, Appl. Mech. Rev. 55, pp. 495-533. 6、 Chang, T., and Gao, H., 2003, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, J. Mech. Phys. Solids 51, pp. 1059-1074. 7、 Zheng, Q., Liu, J. Z., and Jiang, Q., 2002, Excess van der waals inter- action energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation, Phys. Rev. B 65, pp. 245409 (1-6). 8、 Shin-Pon Ju, Cheng-I Weng and Jee-Gong Chang.,2001, Topographic study of sputter-deposited film with different processparameters, Journal of Applied Physics, Vol.89, No.12, pp.7825. 9、 J. Tersoff., 1987.New empirical approach for the structure and energy of covalent systems.Phys.Rev.B.Vol.37,pp 6991. 10、 J. Ferrante, J.R.Smith and J.H.Rose, 1983, Diatomic Molecules and Me- tallic Adhesion, Cohesion, and Chemisorption : A Single Binding- Energy Relation, Physical Review Letters, Vol.50,pp. 1385. 11、 J. Tersoff,1988, Modeling solid-state chemistry: Interatomic potentials for multicompoent systems Phys.Rev. B. Vol. 39, pp 5566. 12、 J. Tersoff, 1988, Empirical interatomic potential for carbon, with app- lications to amorphous-carbon. Phys. Rev. Lett. 61, 2872–2879. 13、 Wang, J., Sun, C. Sun, X., Hinkley, J., Odegard, G.M., Gates T. S., 2003, 2-D nano-scale finite element analysis of a polymer field, Com- posites Science and Technology ,63, 1581-1590. 14、 Krishnan, A. et al., 1998. Young_s modulus of single-walled nanotubes. Physical Review B 58, 14013–14019. 15、 Weaver Jr., W., Gere, J.M., 1990. Matrix Analysis of Framed Structures, third ed. Van Nostrand Reinhold, New York. 16、 Lu, J.P., 1997. Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters 79, 1297–1300. 17、 Popov, V.N., Van Doren, V.E., Balkanski, M., 2000, Elastic properties of single-walled carbon nanotubes. Physical Review B 61,3078–3084. 18、 Gang Zhou , Wenhui Duan, Binglin Gu.,2001, First-principles study on morphology and mechanical properties of single-walled carbon nano- tube. Chemical Physics Letters 333 (2001) 344±349 19、 Chun, Y.L. Chou, T.W.,2004, Strain and pressure sensing using single- walled carbon nanotubes. Nanotechnology,15, 1493-1496. 20、 Konstantin N. Kudin and Gustavo E. Scuseria., 2001, C2F, BN, and C nanoshell elasticity from ab initio computations. Phy. Rev. B, Vol 64, 235406 21、 J.-P. Salvetat, et al., 1999,Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes Phys. Rev. Lett. 82 (1999) 944. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38289 | - |
| dc.description.abstract | 本文以碳-碳鍵的能量曲線為出發點,配合結構力學模擬的方法,對奈米碳管的基本力學性質做了一些初步的研究。本文簡單描述有關於奈米碳管的結構外觀,包含扶手椅型、鋸齒型和對掌型奈米碳管,以及從石墨片到碳管的映射關係。並且以數學公式建立起管壁上碳原子的位置,配合以Tersoff 能量公式的計算發現不同類型的奈米碳管有不一樣的鍵結長度和鍵角,但都和石墨片十分接近。本文也用了Tersoff 能量公式配合碳-碳鍵間的幾何變形關係,計算出不同晶格向量的單壁鋸齒型奈米碳管的拉伸、撓曲和扭轉力場常數。再以能量函數相等的方法,把分子力學和結構力學連接起來,以此建立起數值模型。並以結構力學的方法計算出奈米碳管的軸向彈性模數、剪力模數和自然振頻等奈米碳管的基本力學性質。結果都顯示和碳管的管徑大小相關,不同幾何型式的奈米碳管力學行為也會因此有些許差異。 | zh_TW |
| dc.description.abstract | This paper starting on the potential energy curve of carbon-carbon bond with combination of the analytic method of structural mechanics researches preliminarily on the property of the mechanics in carbon nanotube. This paper briefly describes the structural shape of carbon nanotube, including armchair, zigzag, chiral of carbon nanotube, and the transformation through mathematic formula from graphene sheet to carbon nanotube. In addition, this paper establishes the position of carbon atom on the wall of carbon nanotube by mathematical formula, and discovers that under Tersoff potential formula the different types of carbon nanotube have different bond lengths and bond angles; however, they all very approach to graphene sheet. This paper also combines Tersoff potential formula with the deformation sharp of carbon-carbon bond to calculate the bond stretching, bond angle bending, bond torsional of constants of force fields of different chiral vectors of single-walled carbon nanotube.
Than by energy equivalence links molecular mechanics and structural mechanics to establish analytic model. And using the method of structural mechanics to calculate the axial Young’s modulus, shear modulus, natural frequency and so on, these properties of the mechanics in carbon nanotube. The result all displays that they are related to the diameter of carbon nanotube, and there would be some slight differences from different forms of the function of the mechanics in carbon nanotube. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:29:36Z (GMT). No. of bitstreams: 1 ntu-94-R92525031-1.pdf: 3811544 bytes, checksum: 10d5a55aa3b14e8b5083bc2562366ae3 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘要………….…………………………………………………………………...Ⅰ
Abstract…………………………………………………………………………..Ⅱ 目錄……………………………………………………………………………....Ⅲ 表目錄………………………………………………………………………........Ⅴ 圖目錄………………………………………………………………………........Ⅵ 第一章 緒論……………………………………………………….......1 1-1前言……………………………………………………………………….1 1-2 文獻回顧……………………...…………………………………………..2 1-3 論文內容簡介………………………………...…………………………..3 1-4 奈米碳管的結構………………………………………………………….4 1-5 石墨片和奈米碳管的映射關係………………………………………….6 第二章 奈米碳管碳-碳鍵力場常數的理論推導…………………….8 2-1 奈米碳管的軸向彈性模數和浦松比…………………………………...10 2-2 鋸齒型奈米碳管………………………………………………………...13 2-3 碳-碳鍵應變能函數的計算……………………………………………..18 2-4 Tersoff potential應變能函數…………………………………………..21 第三章 鑽石、石墨和奈米碳管的應變能曲線……………………..26 3-1 鑽石……………………………………………………………………...26 3-2 石墨……………………………………………………………………...28 3-3 奈米碳管……………………………………………………………….. 30 3-4 以應變能函數來模擬分析奈米碳管的力場常數……………………...34 3-4-1 值的計算………………………………………………………..35 3-4-2 、 值的計算……………………………………………………38 3-4-3 、 值的計算結果………………………………………………41 3-5 力場常數結果討論與比較……………………………………………...45 第四章 奈米碳管的力學性質分析………………………………….46 4-1 三度空間梁元素的結構參數…………………………………………..46 4-2 空間梁元素……………………………………………………………...46 4-3 對奈米碳管的結構力學近似…………………………………………...49 4-3-1 分子力學的能量函數……………………………………………..49 4-3-2 結構力學的能量函數……………………………………………..50 4-4 石墨片的計算和討論…………………………………………………...52 4-4-1 石墨片的彈性係數………………………………………………..53 4-4-2 石墨片的分析結果………………………………………………..57 4-5 奈米碳管的靜態分析…………………………………………………...59 4-5-1 奈米碳管的彈性模數……………………………………………..59 4-5-2 奈米碳管彈性模數計算結果……………………………………..62 4-5-3 奈米碳管的剪力模數……………………………………………..65 4-5-4 奈米碳管剪力模數計算結果與討論……………………………..69 4-6 奈米碳管的動態分析…………………………………………………...72 4-6-1 奈米碳管的自然振頻……………………………………………..72 4-6-2 預應變的分析……………………………………………………..75 4-6-3 基本的應用理論…………………………………………………..82 4-6-4 自然振頻和長度的關係…………………………………………..83 4-6-5 高長寬比的自然振頻……………………………………………..84 第五章 結論與展望………………………………………………….86 參考文獻……………………………………………………………...87 表目錄 表2-1 碳元素的數值………………………………………………………….....25 表3-1 奈米碳管的碳-碳鍵性質………………………………………………...34 表3-2 奈米碳管的 值………………………………………………………....36 表3-3 碳-碳鍵的 、 值……………………………………………………...43 表3-4 力場常數的比較………………………………………………………….45 表4-1 石墨片彈性係數分析值……………………………………………….....57 表4-2 石墨片彈性模數比較值………………………………………………….58 表4-3 3-D梁剖面參數……………………………………………………………60 表4-4 奈米碳管彈性係數分析值…………………………………………….....63 表4-5 奈米碳管彈性模數比較值……………………………………………….64 表4-6 3-D梁剖面參數…………………………………………………………66 表4-7 奈米碳管受扭時在管壁的切向合力………………………………….....69 表4-8 奈米碳管受扭時在管壁的旋轉徑度………………………………….....69 表4-9 奈米碳管剪力模數分析值…………………………………………….....70 表4-10 奈米碳管剪力模數比較值……………………………………………...70 表4-11 碳管的自然振頻…………………………………………………….…..75 表4-12 固定直徑但是不同長度的碳管受預應變的基礎振頻………………...76 表4-13 長度不同的碳管基礎振頻變化值………………………………….…..77 表4-14 直徑不同的碳管其基礎振頻……………………………………….…..79 表4-15 直徑不同的碳管基礎振頻變化值……………………………….……..81 表4-16 直徑不同的碳管基礎振頻變化值………………………………….…..83 表4-17 無束制碳管的自然振頻………………………………………….……..84 表4-18 長度不同的無束制碳管第七振頻……………………………………...85 圖目錄 圖1.1 2-D石墨片示意圖……………………………………………………….…4 圖1.2 奈米碳管結構示意圖………………………………………………….…..5 圖1.3 奈米碳管電性示意圖……………………………………………….……..6 圖2.1 石墨片的鍵結結構示意圖………………………………………….……..9 圖2.2 奈米碳管受軸向力示意圖……………………………………….………11 圖2.3 鋸齒型奈米碳管具有代表性截距的前視圖……………………….……11 圖2.4 鋸齒型奈米碳管具有代表性截距的等視圖………………………….…12 圖2.5 (6,0)鋸齒型奈米碳管橫斷面示意圖……………………………….……14 圖2.6 多層奈米碳管的分子結構圖……………………………………….……19 圖2.7 碳原子鍵結型態的示意圖………………………………………….……23 圖3.1 鑽石的四面體結構………………………………………………….……26 圖3.2 鑽石碳-碳鍵的應變能……………………………………………….…...28 圖3.3 石墨的六方排列結構……………………………………………….……29 圖3.4 石墨碳-碳鍵結的應變能…………………………………………….…...30 圖3.5 奈米碳管的六角排列結構………………………………………….……31 圖3.6 奈米碳管碳-碳鍵角示意圖的前視圖……………………………….…..32 圖3.7 奈米碳管碳-碳鍵角示意圖……………………………………….……..33 圖3.8 和直徑的關係圖……………………………………………….……...37 圖3.9 和直徑的關係圖……………………………………………….……...37 圖3.10 鍵角撓曲的示意圖……………………………………………….……..38 圖3.11 石墨片到碳管的變形圖……………………………………….………..39 圖3.12 碳-碳鍵受扭曲時的變形圖……………………………………….……40 圖3.13 碳-碳鍵受扭曲時的變形圖…………………………………….………40 圖3.14 碳-碳鍵鍵角力場常數………………………………………….……….41 圖3.15 2-D的石墨平面結構…………………………………………….………42 圖3.16 3-D的奈米碳管立體結構……………………………………….………42 圖3.17 和奈米碳管直徑關係圖……………………………………….……..44 圖3.18 和奈米碳管直徑關係圖……………………………………….……..44 圖4.1 三度空間梁元素…………………………………………………….……46 圖4.2分子相互作用的示意圖(【3】)…………………………………….……50 圖 4.3 梁元素受純軸力、撓曲和扭轉………………………………….………51 圖4.4 石墨片受力示意圖………………………………………………….……53 圖4.5各型石墨片示意圖………………………………………………….…….55 圖4.6 石墨片受力後在X方向的變形圖……………………………….………56 圖4.7 石墨片受力後在Y方向的變形圖……………………………….………56 圖4.8 石墨片的彈性係數分佈圖………………………………………….……58 圖4.9 奈米碳管受軸向力示意圖………………………………………….……59 圖4.10 奈米碳管的變形圖………………………………………………….…..61 圖4.11 各類型奈米碳管示意圖…………………………………………….…..62 圖4.12 奈米碳管彈性模數和直徑的關係圖…………………………….……..64 圖4.13 奈米碳管受扭曲力矩示意圖…………………………………….……..65 圖4.14 奈米碳管受扭變形圖…………………………………………….……..68 圖4.15 圖奈米碳管剪力模數和直徑的關係圖………………………….…….71 圖4.16 奈米碳管振態圖…………………………………….…………………..74 圖4.17 基礎振頻對軸向預應變的關係圖…………………….………………..76 圖4.18 基礎振頻變化值對軸向奈米應變的關係圖…………….……………..78 圖4.19不同直徑的碳管其基礎振頻和軸向預應變的關係圖……….………...80 圖4.20 基礎振頻變化值對軸向奈米應變的關係圖………………….………..82 圖4-21 基礎振頻和長度的關係……………………………………….……….83 圖4-22 基礎振頻和長度的關係……………………………………….………..85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自然振頻 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 模性模數 | zh_TW |
| dc.subject | 剪力模數 | zh_TW |
| dc.subject | carbon nanotubes | en |
| dc.subject | natural frequency | en |
| dc.subject | shear modulus | en |
| dc.title | 奈米碳管的力學性質數值模擬 | zh_TW |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 柯正忠,李雅榮,趙儒民,宋家驥 | |
| dc.subject.keyword | 奈米碳管,模性模數,剪力模數,自然振頻, | zh_TW |
| dc.subject.keyword | carbon nanotubes,shear modulus,natural frequency, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 3.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
