Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38287
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳乃立(Nae-Lih Wu)
dc.contributor.authorCheng-Chun Pengen
dc.contributor.author彭正君zh_TW
dc.date.accessioned2021-06-13T16:29:33Z-
dc.date.available2006-07-21
dc.date.copyright2005-07-21
dc.date.issued2005
dc.date.submitted2005-07-12
dc.identifier.citation1. D. S. Noh, Y. Koh, I. S. Kang, “Numerical solutions for shape evolution of a particle growing in axisymmetric flows of supersaturated solution”, Journal of Crystal Growth 183 (1998) 427
2. V. Privman, D. V. Goia, E. Matijevic, J. S. Park, “Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors”, Journal of Colloid and Interface Science 213 (1999) 36
3. W. J. Li, E. W. Shi, Z. W. Yin, “Growth habit of rutile and alpha-Al2O3 crystals”, Journal of Crystal Growth 208 (2000) 546
4. W. J. Wu, G. H. Nancollas, “Determination of interfacial tension from crystallization and dissolution data: a comparison with other methods”, Advanced in Colloid and Interface Science 79 (1999) 229
5. E. Matijevic, 'Monodispersed metal (hydrous) oxides – a fascinating field of colloid science”, Accounts of Chemical Research 14 (1981) 22
6. J. H. Adair, E. Suvaci, “Morphological control of particles”, Current Opinion in Colloid & Interface Science 5 (2000) 160-167
7. L. F. Wang, I. Sondi, E. Matijevic, “Preparation of uniform needle-like aragonite particles by homogeneous precipitation” Journal of Colloid and Interface Science 218 (1999) 545
8. M. L. Rock, L. J. Tranchitella, R.S. Pilato, “Control of calcium carbonate particle size and shape by precipitation from CTAB/alcohol/hexadecane mixtures”, Colloid and Polymer Science 275 (1997) 893
9. W. M. Jung, S. H. Kang, W. S. Kim, C. K. Choi, “Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor”, Chemical Engineering Science 55 (2000) 733
10. M. Vucak, M. N. Pons, J. Peric, H. Vivier, “Effect of precipitation conditions on the morphology of calcium carbonate: quantification of crystal shapes using image analysis”, Powder Technology 97(1) (1998) 1
11. T. Kato, A. Sugawara, N. Hosoda, “Calcium Carbonate – Organic Hybrid Materials”, Advanced Materials 14(12) (2002) 869
12. D. V. Goia, E. Matijevic, “Preparation of monodispersed metal particles”, New Journal of Chemistry 22 (1998) 1203
13. D. V. Goia, E. Matijevic, “Tailoring the particle size of mono- dispersed colloidal gold” Colloids and Surfaces A – Physicochemical and Engineering Aspects 146 (1999) 139
14. Y. Zhou, C. Y. Wang, Y. R. Zhu, Z. Y. Chen, “A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature”, Chemistry of Materials 11(9) (1999) 3
15. D. D. Archibald, S. Mann, “Template mineralization of self- assembled anisotropic lipid microstructures”, Nature 364 (1993) 430
16. M. Li, H. Schnablegger, S. Mann, “Coupled synthesis and self -assembly of nanoparticles to give structures with controlled organization”, Nature 402 (1999) 393
17. D. Li, H. Haneda, “Morphologies of zinc oxide particles and their effects on photocatalysis”, Chemosphere 51 (2003) 129
18. Z. R.R. Tian, J. A. Voigt, J. Liu, B.Mckenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, H. F. Xu, “Complex and oriented ZnO nanostructures”, Nature Materials 2 (2003) 821
19. H. Y. Xu, H. Wang, Y. C. Zhang, W. L He, M. K. Zhu, B. Wang, H. Yan, “Hydrothermal synthesis of zinc oxide powders with controllable morphology”, Ceramics International 30 (2004) 93
20. K. Osseo-Asare “Microemulsion-mediated synthesis of nano-size oxide materials”, Handbook of microemulsion science and technology, Marcel Dakker. Inc. (1999) 549-603
21. S. N. Sidorov, L. M. Bronstein, V. A. Davankov, M. P. Tsyurupa, S. P. Solodovnikov, P. M. Valetsky, E. A. Wilder, R. J. Spontak, “Cobalt nanoparticle formation in the pores of hyper-cross-linked polystyrene: control of nanoparticle growth and morphology”, Chemistry of Materials 11 (1999) 3210
22. M. V. Landau, D. Tavor, O. Regev, M. L. Kaliya, M. Herskowitz, V. Valtchev, S. Minotova, “Colloidal nanocrystals of zeolite beta stabilized in alumina matrix”, Chemistry of Materials 11 (1999) 2030
23. T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham, J. H. Adair, “Preparation of Ag/SiO2 Nanosize composites by a reverse micelle and sol-gel technique”, Langmuir 15 (1999) 4228
24. A. Fujishima, K. Hashimoto, T. Watanabe, “TiO2 Photocatalysis Fundamentals and Application”, BKC, Inc. (1999)
25. A. L. Linsebigler, G. Lu, J. T. Tates, “Photocatalysis on TiO2 surfaces : Principles, Mechanisms, and Selected Results”, Chemical Reviews 95 (1995) 735
26. Phase Diagrams for Ceramists Figure 4150~4999, The American Ceramic Society, Inc., 76 (1975)
27. Y. Nosaka, M. A. Fox, “Kinetics for electron-transfer from laser-pulse-irradiated colloidal semiconductors to adsorbed methylviologen – dependence of the quantum yield on incident pulse width”, Journal of Physical Chemistry 92 (1988) 1983
28. A. Hagfeldt, M. Gratzel, “Light-induced redox reactions in nanocrystalline systems”, Chemical Reviews 95 (1995) 49
29. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis”, Chemical Reviews 95 (1995) 69
30. H. Yoneyama, “Electrochemical aspects of light-induced heterogeneous reactions on semiconductors”, Critical Reviews in Solid State and Materials Sciences 18 (1993) 69
31. A. J. Hoffman, H. Yee, G. Mills, M. R. Hoffmann, “Photoinitated polymerization of methyl-methacrylate using Q-sized ZnO colloids”, Journal of Physical Chemistry 96 (1992) 5540
32. W. J. Albery, P. N. Bartlett, “The transport and kinetics of photogenerated carriers in colloidal semiconductor electrode particles”, Journal of the Electrochemical Society 131 (1984) 315
33. M. A. Fox, “ Photocatalysis on modified semiconductor surfaces and on bipolar photoelectrodes”, New Journal of Chemistry 11 (1987) 129
34. A. K. Jamting, J. M. Bell, M. V. Swain, L. S. Wielunski, R. Clissold, “Measurement of the micro mechanical properties of sol-gel TiO2 films”, Thin Solid Films 332 (1998) 189
35. M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski, R. Lamb, “XPS Study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method”, Thin Solid Films 326 (1998) 238
36. Z. A. E. P. Vroon, C. I. M. A. Spee, “Sol-gel coatings on large area glass sheets for electrochromic devices”, Journal of Non-Crystalline Solids 218 (1997) 189
37. O. Harizanov, A. Harizanova, “Development and Investigation of sol-gel solutions for the formation of TiO2 coatings”, Solar Energy Materials and Solar Cells 63 (2000) 185
38. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, “TiO2 thin films by a novel sol-gel processing for gas sensor applications”, Sensors and Actuators B – Chemical 68 (2000) 189
39. Y. F. Zhu, L. Zhang, W. Q. Yao, L. L. Cao, “The chemical states and properties of doped TiO2 film photocatalyst prepared using the sol-gel method with TiCl4 as a precursor”, Applied Surface Science 158 (2000) 32
40. R. L. Penn, J. F. Banfield, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania”, Geochimica et cosmochimica acta 63 (1999) 1549
41. A. Chemseddine, T. Moritz, “Nanostructuring titania: control over nanocrystal structure, size, shape and organization”, European Journal of Inorganic Chemistry 2 (1999) 235
42. W. W. So, S. B. Park, K. J. Kim, S. J. Moon, “Phase transformation behavior at low temperature in hydrothermal treatment of stable and unstable titania sol”, Journal of Colloid and Interface science 191 (1997) 398
43. Y. Q. Zheng, E. W. Shi, Z. Z. Chen, W. J. Li, X. F. Hu, “Influence of solution concentration on the hydrothermal preparation of titania crystallites”, Journal of Materials Chemistry 11 (2001) 1547
44. W. J. Dong, Z. Shi, Y. H. Xu, H. Y. Jin, R. Shi, J. J. Ma, S. H. Feng, “Oriented organization of shape-controlled nanocrystalline TiO2”, Materials Research Bulletin 39 (2004) 433
45. J. Yang, S. Mei, J. M. F. Ferreira, “Hydrothermal synthesis of well-dispersed TiO2 nano-crystals”, Journal of Materials Research 17 (2002) 2197
46. A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature 238 (1972) 37
47. S. N. Frank, A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide ion in aqueous-solutions at TiO2 powder”, Journal of the American Chemical Society 99 (1977) 303
48. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, “Light-induced amphiphilic surfaces”, Nature 388 (1997) 431
49. A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1 (2000) 1
50. A. Fujishima, K. Honda, S. Kikuchi, “Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode”, Kogyo Kagaku Zasshi 72 (1969) 108
51. R. N. Pandey, M. Misra, O. N. Srivastava, “Solar hydrogen production using semiconductor septum (n-CdSe/Ti and n-TiO2/Ti) electrode based photoelectrochemical solar cells”, International Journal of Hydrogen Energy 23 (1998) 861
52. N. N. Rao, S. Dibe, “Photoelectrochemical generation of hydrogen using organic pollutant in water as sacrificial electron doners”, International Journal of Hydrogen Energy 21 (1996) 95
53. A. Heller, “Hydrogen-evolving solar cells”, Science 223 (1984) 1141
54. M. H. Gehlen, M. Ferreira, M. G. Neumann, “Interaction of methyl orange with cationic micelles and its effect on dye photochemistry”, Journal of Photochemistry and Photobiology A: Chemistry 87 (1995) 55
55. L. Zang, C. Y. Liu, X. M. Ren, “Photochemistry of semiconductor particles 3. effects of surface charge on reduction rate of methyl orange photosensitized by ZnS sols”, Journal of Photochemistry and Photobiology A: Chemistry 85 (1995) 239
56. Y. Kim, M. Yoon, “TiO2/Y-zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium”, Journal of Molecular Catalysis A: Chemical 168 (2001) 257
57. L. C. Chen, T. C. Chou, “Kinetics of photodecolorization of methyl orange using titanium dioxide as catalyst”, Industrial & Engineering Chemistry Research 32 (1993) 1520
58. S. Al-Qaradawi, S. R. Salman, “Photocatalytic degradation of methyl orange as a model compound”, Journal of Photochemistry and Photobiology A: Chemistry 148 (2002) 161
59. A. Mills, J. Wang, “Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?” Journal of Photochemistry and Photobiology A: Chemistry 127 (1999) 123
60. T. Zhang, T. Oyama, S. Horikoshi, H. Hidaka, J. Zhao, N. Serpone, “Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight”, Solar Energy Materials and Solar Cells 73 (2002) 287
61. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water”, Applied Catalysis B: Environment 31 (2001) 145
62. K. Yanagisawa, J. Ovenstone, “Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature”, Journal of Physical Chemistry B 103 (1999) 7781
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38287-
dc.description.abstract本實驗以溶膠/凝膠水熱法於180oC合成二氧化鈦晶體,並且在水熱過程中於溶膠/凝膠液中加入各式的添加劑共熱,包括一些常見的界面活性劑即有機或無機之酸鹼等,探討其對二氧化鈦晶體晶貌成長的影響。我們發現在酸性環境下,過量的氯離子或是檸檬酸根離子會藉由吸附於晶體表面來抑制晶體的成長,生成等晶向的晶體。一些常見的有機酸(甲酸、乙酸、苯甲酸)或是界面活性劑(PVP, CTAB)都有類似的效果。但在鹼性的環境中,晶體在各個晶向的成長的速率就不盡相同,較易生成短棒狀之晶體。我們發現當溶液中的氨水濃度增加到[NH3/Ti]=50時,二氧化鈦晶體會朝向<001>方向成長,生成含大量{110}晶面之短棒晶體。這些含{110}晶面的二氧化鈦晶體在紫外光(300 nm)的照射之下,在光催化消耗亞甲基藍的反應中較其他晶面展露出更高的反應活性。zh_TW
dc.description.abstractTiO2 crystallites were synthesized by a solution chemistry process consisting of a sol-gel step followed by hydrothermal treatment at 180oC, and the effect of additives, including some commonly used surfactants, organic or inorganic acids and bases, on the morphology of crystallites were investigated. Excess chloride or citrate ions in acidic condition tend to retard the grain growth rate by undue adsorption to the crystallite surfaces, resulting in equidimensionl particles; certain organic acids (formic, acetic and benzoic acid) and surfactants (PVP, CTAB) displayed similar influences on the morphology of synthesized crystallites.
However, the growth rates along different lattice directions tend to differ in some basic conditions, leading to elongated crystallites. With increasing NH3 content from [NH3/Ti] = 0 to 50, TiO2 crystallites were increasingly elongated along <001> to form crystallite having predominantly {110} surface planes. While not significant in methyl orange solution, the surface catalytic activities of the crystallites toward degradation of methyl orange under UV-light (300 nm) illumination was found to increase with increasing {110} plane coverage.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:29:33Z (GMT). No. of bitstreams: 1
ntu-94-R92524019-1.pdf: 1573371 bytes, checksum: 9b65f5b1c5835851ec95fa2381d7d27a (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
摘要 I
Abstract II
Table of Contents III
List of Figures VI
List of Tables XI
Chapter 1. Introduction and Background 1
1.1 Introduction to Morphological Control of Particles 1
1.2 Characteristics of TiO2 4
1.3 Photocatalysis on TiO2 9
1.3-1 Principles of Photocatalysis on Semiconductors 9
1.3-2 Mechanisms for Photocatalysis on TiO2 12
1.3-3 Nano-effects on Photocatalysis 15
1.4 Preparation of Nanometer-sized TiO2 with Controlled Morphology 19
1.4-1 Mechanism of Sol-Gel Method 19
1.4-2 Hydrothermal Treatment 21
1.5 Application of Photocatalysis on TiO2 23
1.5-1 General Applications 23
1.5-2 Photocatalytic Degradation of Organic Compounds: Methyl Orange and Methylene Blue 27
Chapter 2. Experimental 34
2.1 Synthesis of TiO2 crystallites 34
2.1-1 Preparation of Ti Sol/Gel Solution 34
2.1-2 Hydrothermal Treatment 35
2.2 Structure and Morphology Analysis 38
2.2-1 XRD 38
2.2-2 BET 39
2.2-3 TEM/HRTEM 39
2.3 Kinetic Study on the Photocatalytic Reaction in TiO2/UV System 40
Chapter 3. Result and Discussion 44
3.1 TiO2 Crystallites Synthesized through Hydrothermal Treatment 44
3.2 The Effect of Acidic Additives on the Morphology of TiO2 48
3.3 The Effect of Surfactants on the Morphology of TiO2 53
3.4 The Effect of Alkaline Additives on the Morphology of TiO2 55
3.4-1 KOH and E4NOH 55
3.4-2 Ammonia 55
3.5 Degradation of Methyl Orange Photocatalyzed by TiO2 with Different Morphologies 68
3.5-1 Optimization of the Concentration of TiO2 Catalyst 68
3.5-2 Photocatalytic Activity of TiO2 with Different Morphology 72
3.6 Degradation of Methylene Blue Photocatalyzed by TiO2 with Different Morphology 75
3.6-1 Optimization of the Concentration of TiO2 Catalyst 75
3.6-2 Photocatalytic Activity of TiO2 with Different Morphology 79
Chapter 4. Conclusion 93
References 95
dc.language.isoen
dc.subject晶貌控制zh_TW
dc.subject二氧化鈦zh_TW
dc.subject水熱法zh_TW
dc.subject亞甲基藍zh_TW
dc.subjectHydrothermal Methoden
dc.subjectTiO2en
dc.subjectMethylene blueen
dc.subjectMorphology controlen
dc.title光觸媒晶貌調控之研究zh_TW
dc.titleResearch on Morphological Control of Nanocrystalline Photocatalysten
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳紀聖(Chi-Sheng Wu),黃淑娟(Shu-Jiuan Huang)
dc.subject.keyword二氧化鈦,水熱法,晶貌控制,亞甲基藍,zh_TW
dc.subject.keywordTiO2,Hydrothermal Method,Morphology control,Methylene blue,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2005-07-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved