請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38272完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高全良(Chuan-Liang Kao) | |
| dc.contributor.author | Yuan-Chang Chao | en |
| dc.contributor.author | 趙元章 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:29:14Z | - |
| dc.date.available | 2006-08-02 | |
| dc.date.copyright | 2005-08-02 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-13 | |
| dc.identifier.citation | Ackermann, M and Padmanabhan, R. 2001. De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem. 276(43):3926-3937.
An, J., Kimura-Kuroda, J., Hirabayashi, Y., Yasui, K. 1999. Development of a novel mouse model for dengue virus infection. Virology. 263:70-77. Atif, H.A., Kasim, O.A., Khaled, S.T., Koharik, M.B., 1998. Bactericidal activity of polymorphonuclear neutrophils in individuals severely deficient in glucose -6-phosphate dehydrogenase. Annals of Saudi Medicine.18(4):363-365. Betke, K., Brewer, G.J., Kirkman, H.N., Luzzatto, L,Motulsky A.C., Ramot, B and Siniscalco, M. 1967. Standardization of procedures for the study of glucose -6-phosphate dehydrogenase. World Health Organization Technical Report Series No.366. Geneva. Beutler, E. 1983. Glucose-6-phosphate dehydroge-nase deficiency. In JB Stanbury, J Wyngaarden,DS Fredrickson, and J Goldstein (eds.): The Met-abolic Basis of Inherited Disease. Fifth edition. New York: McGraw-Hill. 1629-1653. Beutler, E. 1990. The genetics of glucose-6-phos-phate dehydrogenase deficiency. Semin. Hema-tol. 27:137–164. Bosch, I., Xhaja, K., Estevez, L., Raines, G., Melichar, H., Warke, RV., Fournier, MV., Ennis, FA., Rothman, AL. 2002. Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J Virol. 76:5588-5597. Burke, D.S., Nisalak, A., Johnson, D.E., and Scott, R.M. 1988. A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 38:172-180. Cahour, A., Pletnev, A., Vazielle-Falcoz M., Rosen, L., Lai, C.J. 1995. Growth restricted dengue virus mutants containing deletions in the 5′ noncoding region of the RNA genome. Virology. 207:68-76. Cauchi, M.R., Henchal, E.A and Wright P.J. 1991. The sensitivity of cell-associated dengue virus proteins to trypsin and the detection of trypsin-resistant fragements of the nonstructural protein NS1. Virology. 180:659-667. Cella, M., Salio, M., Sakakibara, Y., Langen, H., Julkunen, I and Lanzavecchia, A. 1999. Maturation, activation, and protection of dendritic cells induced by doublestranded RNA. J. Exp. Med. 189:821-829. Chang, JG., Chiou, SS., Perng, Ll., Chen, TC., Liu, TC., Lee, LS., Chen, PH and Tang, TK. 1992. Molecular characterization of glucose-6- phosphate dehydrogenase (G6PD) deficiency by natural and amplification created restriction sites: five mutations account for most G6PD deficiency cases in Taiwan. Blood. 80 (4)1079-1082. Chiang, SH., Wu, SJ., Wu, KF., Hsiao, KJ. 1999. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency in Taiwan. Southeast Asian J Trop Med Public Health. 30: Suppl 2:72-74. Chu, JY. 1999. Glucose-6-phosphate dehydrogenase(G6PD) mutations and population movement in Taiwan and neighboring countries. Taiwan Medical Journal. 42:252-256. Elbim, C., Pillet, S., Prevost, MH., Preira, A., Girard, PM., Rogine, N., Matusani, H., Hakim, J., Israel, N., Gougerot-Pocidalo, MA. 1999. Redox and activation status of monocytes from human immunodeficiency virus-infected patients: relationship with viral load. J Virol. 73(6):4561-4566. Erbigci, A.B., Yilmaz, N. 2002. Erythrocyte glucose 6-phosphate dehydrogenase deficiency frequency in Gaziantep, Turkey. Eastern Journal of medicine. 7(1):15-18. Espina, L.M., Valero, N.J., Hernández, J.M and Mosquera, J.A. 2003. Increased apoptosis and expression of tumor necrosis factor-α caused by infection of cultured human monocytes with dengue virus. Am. J. Trop. Med. Hyg. 68(1):48-53. Galdiero M, de l’Ero GC, Marcatili A, 1997. Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun. 65: 699-707. Gollins, S.W. and Porterfield, J.S. 1984. Flavivirus infection enhancement in macrophage: radioactive and biological studies on the effect of antibody on viral fate. J. Gen. Virol. 65:1261-1272. Gubler, DJ. 1998. Dengue and dengue Hemorrhagic Fever. Clinical microbiology review 3:480-496. Halstead, S.B. 1988. Pathogenesis of dengue: Challenge to molecular biology. Science 239: 476-481. Halstead, S.B. 1989. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenic cascade. Reviews of Infectious Diseases 11(4): 5830-5839. Ho, LJ., Wang, JJ., Shiao, MF., Kao, CL., Chang, DM., Han, SW. and Lai, JH. 2001. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. Immunology. 166:1499-1506. Hober, D., Poli, L., Roblin, B., Gestas, P., Chungue, E., Granic, G., Imbert, P., Pecarere, J.L., Vergez-Pascal, R. and Wattre, P. 1993 Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg. 48(3):324-331. Howitz, CA, Skradski, K, Reece, E. 1984. Hemolytic anemia in previously healthy adult patient with CMV infection. report of two cases and evaluation of sub-clinical haemolysis in CMV mononucleosis. Scand J Haematol.333:35-40. Huang, YH., Lei, HY., Liu, HS., Lin, YS., Liu, CC., Yeh, TM. 2000. Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg. 63(1-2):71-75. Ippei Fujimoto., Jiehong Pan., Takenori Takizawa and Yoshinobu Nakanishi. 2000. Virus Clearance through Apoptosis-Dependent Phagocytosis of Influenza A Virus-Infected Cells by Macrophages. J. Virol. 74: 3399-3403. Israel, G and Mordechai, M. 2001. Glucose-6-phosphate dehydrogenase deficiency is associated with increased initial clinical severity of acute viral hepatitis A. J. Gastro. and Hepa. 16: 1239–1243. Jan, JT., Chen, BH., Ma, SH., Liu, CI, Tsai, HP., Wu, HC., Jiang, SY., Yang, KD., Shaio, MF. 2000. Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-κB are sequentially involved. J. Virol. 74: 8680-8691.. Kalayanarooj, S., Vaughn, D.W., Nimmannitya, S., Green, S., Suntayakorn, S., Kunentrasai, N., Viramitrachai, W., Ratanachu-eke, S., Kiatpolpoj, S., Innis, B.L., Rothman, A.L., Nisalak, A., and Ennis, F.A. 1997. Early clinical and laboratory indicators of acute dengue illness. J. infect. Dis. 176: 313-321. Katrin, C.L., David, W.V., Douglas, M.W., Rosalba, S, Iris Villalobos de Chacon., Celso, R. and Rebeca, R-H. 1999. Dengue virus structural differences that correlate with pathogenesis. J. Virol.73:6 4738-4747. King, CC., Wu, YC., Chao, DY., Lin, TH., Chow, L., Wang, HT., Ku CC., Kao, CL., Chien, LJ., Chang, HJ., Huang, JH., Twu, SJ., Huang, KP., Lam, SK., and Gubler D. J. 2000. Major Epidemics of Dengue in Taiwan in 1981-2000: Related to Intensive Virus Activities in Asia. Dengue Bulletin. 24:1-10. La Fleur, C., Granados, J., Vargas-Alarcon, G., Ruíz-Morales, J., Villarreal-Garza, C., Higuera, L., Hernandez-Pacheco ,G., Cutino-Moguel, T., Rangel, H., Figueroa, R., Acosta, M., Lazcano, E., Ramos, C. 2002. HLA-DR antigen frequencies in Mexican patients with dengue virus infection: HLA-DR4 as a possible genetic resistance factor for dengue haemorrhagic fever. Human Immunol. 63: 1039-1044. Lei, HY., Yeh, TM., Liu, HS., Lin, YS., Chen, SH., Liu, CC. 2001. Immunopathogenesis of dengue virus infection. J Biomed Sci. 8:377–388. Leitmeyer, KC., Vaughn, DW., Watts, DM., Salas, R., Villalobos, I., deChacon, Ramos C., Rico-Hesse R. 1999. Dengue virus structural difference that correlates with pathogenesis. J Virol. 75:4828-4839. Li, Q., and Cathcart, M. K. 1997. Selective inhibition of cytosolic phospholipase A2 in activated human monocytes. Regulation of superoxide anion production and low-density lipoprotein oxidation. J. Biol. Chem. 272:2404-2411. Liao, CL., Lin, YL., Wu, BC., Tsao, CH., Wang, MC., Liu, CI., Huang, YL., Chen, JH., Wang, JP and Chen, LK. 2001. Salicylates Inhibit flavivirus replication independently of blocking nuclear factor kappa B activation. J Virol. 73: 4738-4747. Lin, YL., Liu, CC., Lei, HY., Yeh, TM., Lin, YS., Chen, RM. and Liu, HS. 2000. Infection of five human liver cell lines by dengue-2 virus. J Med Virol. 60(4):425-31. Lin, YL., Liu, CC., Chuang, JI., Lei, HY., Yeh, TM., Lin, YS., Huang, YH., Liu, H.S. 2000. Involvement of oxidative stress, NF-IL-6 and RANTES expression in dengue-2 virus infected human liver cells. Virology. 276:114-126. Luzzatto, L. and Mehta, A. 1989. Glucose-6-phos-phate dehydrogenase deficiency. In CR Scriver,AL Baudet, WS Sly, and D Valle (eds.): The Met-abolic of Inherited Disease. Sixth edition. NewYork: McGraw-Hill, 2237-2265. Malavige, G. N., Fernando, S., Fernando, D. J., Seneviratne, S. L. 2004. Dengue viral infections Review. Postgrad Med J. 80: 588-601. Malewicz, B., Parthsarathy, S., Jenkin, H. M and Baumann, W. J. 1981. Rapid phospholipase A2 stimulation and diacylglycerol cholinephosphotransferase inhibition in baby hamster kidney cells during initiation of dengue virus infection. Biochem. Biophys. Res. Commun. 101:404-410. Mohan, B., Patwari, AK., Anand, VK. 2000. Hepatic dysfunction in childhood dengue infection. J Trop Pediatr 46:40-43. Nevalainen, T. J., and W. Losacker. 1997. Serum phospholipase A2 in dengue. J. Infect. 35:251–252. Nowak, T., Färber P.M., Wengler, G. and Wengler, G. 1989. Analyses of the terminal sequences of west nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology . 169: 365-376. Reeves, E.P., Hugues, H.L., Jacobs, L., Messina, C.G.M., Bolsover, S., Gabellak, G., Potma, E.O., Warley, A., RoesI JuÈ rgen and Segal, A.W. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416 (21) : 291-297. Rico-Hesse R., Harrison, L., Salas, R., Tovar, D., Nisalak, A., Ramos, C., Boshell, J., Rde, Mesa M., Nogueira, R., Travassos, da Rosa A. 1997. Origins of dengue 2 viruses associated with increased pathogenicity in the Americas. Virology. 230:244-251. Russell, P.K. and Nisalak, A.1967. Dengue virus identification by the plaque reduction neutralization test. J. Immunol. 99:291-296. Shahab Abid. and A. Haleem Khan.2002. Severe Hemolysis and renal failure in glucose-6-phosphate dehydrogenase deficient patients with hepatitis E. Amer. J. Gastro. 97(6): 1544-1547. Shu, PY., Chang, SF., Kuo, YC., Yueh, YY., Chien, LJ., Sue, CL., Lin, TH., Huang, JH. 2003. Development of group- and serotype-specific one-step SYBR Green I-Based real-time reverse transcription-PCR assay for dengue virus. J. Clin. Microbiol. 41:2408-2416. Tadeusz, J.K ,etc. 2002. Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. The Lancet. 360(27): 310-312. Thein, S., Aung, M.M., Shew, T.N., Aye, M., Zaw, A., Aye, K., Aye, K.M., and Askov, J. 1997. Risk factor in dengue shock syndrome. Am. J. Trop. Med. Hyg.56:566-572. Tsai KJ., Hung IJ., Chow CK., Stern A., Chao SS., and Chiu DT. 1998. Impaired production of nitric oxide, superoxide, and hydrogen peroxide in glucose 6-phosphate-dehydrogenase -deficient granulocytes. FEBS Letters 436:411-414. Vaughn, DW., Green, S., Kalayanarooj, S., Innis, BL., Nimmannitya, S., Suntayakorn, S., Endy, TP., Raengsakulrach, B., Rothman, AL., Ennis, FA., Nisalak, A. 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with severity. J Infect Dis. 181:2-9. Voravarn, S.T., Lerlugsn, S., Kalaya, T., Vip, V., Rachaneekorn, C., Parichat, P.A., Suthee Y., 2002. Effect of red blood cell glucose-6 -phosphate dehydrogenase deficiency on patients with dengue hemorrhagic fever. J. Med Assoc Thai. 85(2):S522-S529. Wang, WK., Chao, DY., Kao, CL., Wu, HC., Liu, YC., Li, CM., Lin, SC., Ho, ST., Huang, JH., and King, CC. 2003. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 305:330-338. Wang WK., Sung TL., Tsai YC., Kao CL., Chang SM., and King CC. 2002. Detection of Dengue Virus Replication in Peripheral Blood Mononuclear Cells from Dengue Virus Type 2-Infected Patients by a Reverse Transcription–Real-Time PCR Assay. J. Clin. Microbiol. 40:4473-4478. Wengler, G., and Gross, H.J., 1978. Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses. Virology 89:423-437. WHO.1986. Dengue hemorrhagic fever:diagnosis, treatment, control. World Health Organization, Geneva. Wolach, B., Ashkenazi, M., Grossmann, R., Gavrieli, R., Friedman, Z., Bashan, N., and Roos, D. 2004. Diurnal Fluctuation of Leukocyte G6PD Activity. A Possible Explanation for the Normal Neutrophil Bactericidal Activity and the Low Incidence of Pyogenic Infections in Patients with Severe G6PD Deficiency in Israel. Pediatric Research. 55:807-813. Wu, SJ., Grouard-Vogel, G0., Sun, W., Mascola, JR., Brachtel, E., Putvatana, R., Louder, MK., Filgueira, L., Marovich, MA., Wong, HK., Blauvelt, A., Murphy, GS., Robb, ML., Innes, BL., Birx, DL., Hayes, CG., Frankel, SS. 2000. Human skin Langerhans cells are targets of dengue virus infection. Nat Med. 6(7):816-20. Yamaguchi Y, Hisama N, Okajima K, Uchiba M, Murakami K, Takahashi Y, Yamada S, Mori K, Ogawa M. 1997. Pretreatment with activated protein C or active human urinary thrombomodulin attenuates the production of cytokine-induced neutrophil chemoattractant following ischemia/reperfusion in rat liver. Hepatology. 25(5):1136-1140. Zeng, L., Falgout, B. and Markoff, L. 1998. Identification of specific nucleotide sequences within the conserved 3'-SL in the dengue type 2 virus genome required for replication. J. Virol. 72: 7510-7522. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38272 | - |
| dc.description.abstract | 登革病毒是屬於黃質病毒科的一種,並可區分為四種血清型(分別為DENV-1、DENV-2、DENV-3及DENV-4),其媒介是白線斑蚊及埃及斑蚊,在臨床上可造成一般的登革熱、嚴重的登革出血熱(dengue hemorrhagic fever,DHF)及登革休克症候群(dengue shock syndrome,DSS)。蠶豆症(favism)是由於Glucose-6- phosphate dehydrogenase (G6PD) 酵素缺乏所造成的疾病,有研究指出嚴重的G6PD酵素缺乏容易遭受細菌或病毒的感染,甚至造成慢性肉牙腫(chronic granulomatous disease, CGD) 的情況。台灣地區G6PD缺乏患者平均約有3 %的盛行率,且台灣地區同時為登革病毒流行的區域,因此為研究G6PD缺乏患者是否較容易被登革病毒感染及是否若感染後較容易造成嚴重的病症,於是收集12位蠶豆症患者及24位健康個體來進行研究,並從人類周邊血液中分離出單核球,在體外以每細胞中的病毒感染量(multiplicity of infection, MOI)為0.1時,去感染第二型登革病毒兩種病毒株(New Guinea C及16681),再培養三天後將單核球進行雙色染色,最後以流式細胞儀進行結果分析。
結果顯示New Guinea C在健康個體之單核球的感染率平均值為20.23±6.22 %(8.03 % ~ 30.40 %);在G6PD缺乏者中的感染率平均值為33.36±3.48 %(27.20 % ~ 39.16 %)(p<0.01)。16681在健康個體之單核球的感染率平均值為27.41±7.11 % (12.29 % ~ 37.10 %);也在G6PD缺乏者中的感染率平均值較高而為40.74±3.73 %(35.06 % ~ 48.87 %)(p<0.01)。由此可知G6PD缺乏者之單核球對第二型登革病毒的兩不同病毒株(New Guinea C或16681)的感染率均比健康個體單核球的感染率來得高,且具統計意義。此外16681無論在G6PD缺乏者或在健康個體之單核球的感染率也均高於New Guinea C(p<0.05),即來自登革出血熱病人的病毒與來自登革熱病人的病毒也有所不同。 從本研究中可得到初步之結論,即宿主因子可能在登革病毒感染中扮演重要之角色。此外本研究亦發現不同登革病毒株在同一宿主下,所引起之感染率不同,即引起重症(DHF/DSS)之登革病毒株16681比引起登革熱之病毒株New Guinea C具更高之感染力。此項研究有助於台灣未來登革流行加強對患有蠶豆症病人的衛生教育工作。 | zh_TW |
| dc.description.abstract | Dengue virus is a member of family Flaviviridae. There are four serotypes of dengue virus, DENV-1, DENV-2, DENV-3 and DENV-4. The vectors of dengue virus are Aedes albopictus and Aedes aegypti and dengue virus can cause mild dengue fever (DF), or severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Favism is a disease resulting from deficiency of Glucose-6-phosphate dehydrogenase, G6PD. The G6PD deficiency patients are easier infected by bacteria or virus even develop chronic granulomatous disease (CGD). In average, the prevalence of G6PD deficiency is about 3% in Taiwan and Taiwan is also an epidemic area of dengue virus. To study whether G6PD deficiency patients are susceptible to dengue virus and the infection is easier to cause severe syndrome. We have collected twelve G6PD deficiency patients and twenty four normal people to investigate. Monocytes were isolated from peripheral blood mononuclear cell (PBMC) and these monocytes were in vitro infected by two different strain of dengue virus serotype 2 (New Guinea C and 16681) at multiplicity of infection (MOI)= 0.1. After culturing for three days, the monocytes were double stained and analyzed by flowcytometer.
The result found that the average infection rate of New Guinea C to normal people monocytes was 20.23±6.22 % (8.03 % ~ 30.40 %) and to G6PD deficiency patients’ monocytes was 33.36±3.48 % (27.20 % ~ 39.16 %) (p<0.01). The average infection rate of 16681 to normal people monocytes was 27.41±7.11 % (12.29 % ~ 37.10 %) and to G6PD deficiency patients’ monocytes was 40.74±3.73 % (35.06 % ~ 48.87 %) (p<0.01). According to the results, G6PD deficiency patients’ monocytes had statistically significant higher infection rate than normal ones even in New Guinea C or 16681. In addition, 16681 has higher infection rate than New Guinea C both in G6PD deficiency patients’ monocytes and normal ones (p<0.05). In conclusion, this study demonstrates that the host factor plays an important role in the infection of dengue virus. In addition, the infection rate of different strains of dengue viruses in the same host was not the same. The strain of dengue virus 16681, isolated from DHF/DSS, possesses better ability to infect human monocytes than New Guinea C isolated from dengue fever. Therefore, we can apply theses above finding in educating patients with favism to avoid dengue virus infection and thus minimize their healthy threat. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:29:14Z (GMT). No. of bitstreams: 1 ntu-94-R91424015-1.pdf: 813178 bytes, checksum: e65d83fdde4d18650baa356c9598f833 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要........................................................................................1
英文摘要………………………………………………….…….………3 第一章 緒論…………………………………………………..…….....5 一、登革病毒簡介……………………………..…………..……….6 1.1 簡介………………………………………….……..……..…6 1.2 登革病毒的複製………………………………………….....7 二、登革病毒臨床症狀…...........................................................8 三、登革病毒的流行病學…......................................................10 3.1 全球的流行概況…......................................................…10 3.2 台灣的流行概況…..........................................................11 四、登革病毒的致病機轉…......................................................12 4.1 樹突細胞(Dendritic cell;DC).............................…...12 4.2 單核球與巨噬細胞(Monocyte and Macrophage).......13 4.3 內皮細胞(Endothelial cell).........................................13 五、G6PD缺乏症簡介…..........................................................17 六、G6PD缺乏症之流行病學與基因分析….............................19 七、G6PD的代謝及其在紅血球中的角色…..............................20 八、G6PD在白血球中的重要性及免疫關係..............................21 九、G6PD缺乏症的免疫能力…................................................22 十、登革病毒與G6PD缺乏症的相關研究…..............................23 十一、研究動機與目的…..........................................................24 第二章 實驗材料及製備…............................................................25 一、細胞株…............................................................................26 二、病毒株…............................................................................26 三、登革病毒抗體….................................................................27 四、試藥之製備….....................................................................27 五、檢體的來源及篩選…..........................................................30 第三章 實驗方法與步驟…............................................................31 一、細胞培養…........................................................................32 二、登革病毒株的繼代與儲存…...............................................33 三、免疫螢光染色法(IFA)….................................................34 四、病毒活性之滴定: 溶斑試驗(plaque assay)....................35 五、單核細胞(Monocyte)分離方法…...................................35 5.1傳統法............................................................................35 5.2 MACS system................................................................37 六、病毒之感染與培養..............................................................39 七、細胞固定、穿孔與染色…...................................................39 八、以流式細胞儀分析受感染的單核球細胞…..........................40 九、溶斑減少中和試驗(PRNT).............................................41 十、反轉錄即時聚合酵素鏈鎖反應……....................................42 第四章 實驗結果……………………………………………………..45 一、傳統法與MACS分離之單核球純度比較…………………..46 二、人類單核球感染登革病毒之螢光染色結果………………....46 三、登革病毒感染的時程(time course)試驗………..……….47 四、單核球分離法對登革病毒之比較…………………..………..47 五、健康個體與G6PD缺乏病患對登革病毒之感受性之比較...48 六、即時反轉錄聚合酵素鏈鎖反應之最適化…………………....49 第五章 討論…………………………………………………………..52 圖表與說明……………………………………………………………57 參考文獻………………………………………………………………71 表 次 目 表一、健康個體與G6PD缺乏患者之相關資料…………………..58 表二、傳統法與MACS分離單核球純度比較……………………..60 表三、以傳統法與MACS所取得之單核球對登革病毒 之感受性………………………………………………………61 表四、RT real-time PCR primer 濃度最適化之結果表……..……62 圖 目 次 圖一、傳統法與MACS分離之單核球純度比較…………………...63 圖二、未感染登革病毒之N01人類單核球免疫螢光染色結果…...64 圖三、N01之人類單核球感染DENV-2(New Guinea C)三 天之免疫螢光染色結果………………………………...…….64 圖四、健康個體N01之單核球感染登革病毒一至五天後之情 形(流式細胞儀分析結果)………………………………....65 圖五、健康個體與G6PD缺乏患者單核球對登革病毒之感染率...66 圖六、健康個體感染登革病毒後之流式細胞結果圖………………67 圖七、G6PD缺乏病患感染登革病毒後之流式細胞結果圖………68 圖八、primer濃度之分離曲線圖……………………………………69 圖九、健康個體N01之單核球感染登革病毒一至五天之病 毒量(溶斑試驗分析結果)……………………..…………..70 圖十、健康個體N01之單核球感染登革病毒一至五天之病 毒量(RT real-time PCR)…………………….……………70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 單核球 | zh_TW |
| dc.subject | 登革病毒 | zh_TW |
| dc.subject | G6PD缺乏症 | zh_TW |
| dc.subject | 蠶豆症 | zh_TW |
| dc.subject | 感染率 | zh_TW |
| dc.subject | 流式細胞儀 | zh_TW |
| dc.subject | flowcytometery | en |
| dc.subject | dengue virus | en |
| dc.subject | monocyte | en |
| dc.subject | G6PD deficiency | en |
| dc.subject | favism | en |
| dc.subject | infection rate | en |
| dc.title | 第二型登革病毒在G6PD缺乏病人單核球體外感染之研究 | zh_TW |
| dc.title | In vitro infection of G6PD-deficient patients’ monocytes with dengue virus serotype 2 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李君男(Chin-Nien Lee),張淑媛(Sui-Yuan Chang),金傳春(Chwan-Chuen King) | |
| dc.subject.keyword | 登革病毒,單核球,G6PD缺乏症,蠶豆症,感染率,流式細胞儀, | zh_TW |
| dc.subject.keyword | dengue virus,monocyte,G6PD deficiency,favism,infection rate,flowcytometery, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫事技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 794.12 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
