請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38244完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝(Hwai-Shen Liu) | |
| dc.contributor.author | Chung-Lin Ho | en |
| dc.contributor.author | 何崇麟 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:28:40Z | - |
| dc.date.available | 2005-07-21 | |
| dc.date.copyright | 2005-07-21 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-13 | |
| dc.identifier.citation | Alvarez, H.M., Souto, M.F., Viale, A., Pucci, O.H., “ Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432.” , FEMS Microbiol. Lett., 200, 195-200, 2001
Ashraf, W., Mihdhir, A., and Murrell, J.C. “ Bacterial Oxidation of Propane. ”, FEMS Microbiol. Lett., 122, 1-6, 1994 Alvarez, H.M. “ Relationship between –oxidation and the hydrocarbon – degrading profile and actinomycetes bacteria.”, Int. Biodeter. Biodegr., 52, 35-42, 2003 Atlas, R.M., “ Petroleum biodegradation and oil spill bioremediation.”, Marine Pollution Bulletin, 31, 178-182, 1995 Atlas, R.M., “ Microbial degradation of petroleum hydrocarbons:an environmental perspective.” , Microbial Review, 45, 180-209, 1981 Boulton,C.A. and Ratledge,C.,“The Physiology of Hydrocarbon-Utilizing Microorganism.” , Top.Enzyme Ferment.Biotechnol., 9, 11-77, 1984 Beam, H.W. and Perry, J.J., “ Microbial degradation of cycloparaffinic hydrocarbons via co-metabolism and commensalism.” , J. Gen. Microbiol., 82, 163-169, 1974 Britton, L.N., “ Microbial Degradation of Aliphatic Hydrocarbons. ” In: Microbal Degradation of Organic Compounds Gibson, D. T.(Ed.)Marcel Dekker, New York., 1984 Bühler, M., and Schindler, J. “Aliphatic Hydrocarbons.”, In Biotransformations, Kieslich, K. (Ed.), Verlag Chemie Weinheim, Weinheim., 1984 Biermann, M., Lange, F., Piorr, R., Ploog, U., Rutzen, H., Schindler, J., Schmidt, R., “ Synthesis of Surfactants ”, 1987, In: Falbe, J. (Ed.), Surfactants in Consumer Products, Theory, Technology and Application. Springer-Verlag, Heidelberg. Bregnard, T.P., Hohener, P., Haner, A., and Zeyer, J., “Anaerobic degradation of pristine in nitrate-reducing microcosms and enrichment culture.”, Appl. Environ. Microbiol., 63, 2077-2081, 1997 Bento1 F.M., de Oliveira Camargol F.A., Okeke B., Frankenberger-Júnior W.T., “ Bioremediation of Soil Contaminated by Diesel Oil.” , Brazilian Journal of Microbiology, 34, 65-68, 2003 Connan , J. , “ Biodegradation of Crude Oils in Reservoirs.” , Adv. Petrol. Geochem. , 1 , 299-333 , 1984 Cerniglia, C.E., “ Fungal metabolism of polycyclic aromatic hydrocarbons:past, present and future applications in bioremediation.”, J. Ind. Microbiol. Biotechnol., 19, 324-333, 1997 Cerniglia, C.E., “ Biodegradation of polycyclic aromatic hydrocarbons.” , Biodegradation, 3, 351-368,1992 Christofi, N., Ivshina, I.B., Kuyukina, M.S. and Philp, J.C., “Biological treatment of crude oil contaminated soil in Russia.” In Contaminated Land and Groundwater:Future Directions ed. Lerner, D.N. and Walton, N.R.G. . Engineering Geology Special Publication 14. Geological Society, 45-51, 1998 Calabrese, E.J. and Kostecki, P.T., Soil Contaminated by Petroleum : Environmental and Public Health Effects., JOHN WILEY AND SONS. New York., 5-18, 1988 de Carvalho, C.C.C.R., Pons, M.N. and da Fonseca, M.M.R., “ Principal components analysis as a tool to summarise biotransformation data:influence on cells of solvent type and phase ratio .” , Biocatal. Biotrans., 21, 305-314, 2003 de Carvalho , C.C.C.R. and da Fonseca, M.M.R., “ A simple method to observe organic solvent drops with a standard optical microscope.” , Microsc. Res. Technol., 60, 465-466, 2003 de Carvalho, C.C.C.R., da Fonseca M.M.R., “ Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14.” , FEMS Microbiology Ecology, 51, 389-399, 2005 Doi, R. H., and McGloughlim, M., “ Standard techniques for Bacillus ”, In Biology of Bacilli., Butterworth - Heinemann, 233-239, 1992 Finnerty, W.M., “ The biology and genetics of the genus Rodococcus.” , Annual Review of Microbiology, 46, 193-218, 1992 Goswami, P., and Singh, H.D., “ Different Modes of Hydrocarbon Uptake by Two Pseudomonas Species. ” , Biotechnol. Bioeng., 37, 1-11, 1991 Goma, G. and Ribot, D., “ Hydrocarbon fermentation:Kinetics of microbial cell growth.”, Biotechnol. Bioeng., 20, 1723-1734, 1978 Gibson, D. T., and Subramanian, V., “ Microbial Degradation of Aromatic Hydrocarbons.” , In Microbial Degradation of Organic Compounds . D. T. Gibson (Ed .), Marcel Dekker, Inc ., New York, 181-242, 1984 Galanakis, E., Bitsori, M., Samonis, G., Christidou, A., Georgiladakis, A., Sbyrakis, S., and Tselentis, Y., “Ochrobactrum anthropi Bacteraemia in Immunocompetent Children.”, Scand. J. Infect Dis., 34, 800-803, 2002 Goodfellow, M., “ Genus Rodococcus.” , In Bergey’s Manual of Systematic Bacteriology, 4th ed., Williams, S.T. , Sharpe, M.E. and Holt, J.G., Baltimore:Williams and Wilkins, 2362-2371, 1989 Harwood, C.R., “Bacillus.”, Plenum Press, 189-202, 1989 Huesemann, M.H., “ Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contanminated soils.”, Environ. Sci. Technol., 29, 7-18, 1995 Ivshina, I.B., Kamenskikh, T.N. and Liapunov, Y.E., “ IEGM Catalogue of strains of Regional Specialised Collection of Alkanotrophic Microorganisms. ”, Russian Academy of Sciences, 163, 1994 Juhasz, A.L. and Naidu R., “ Bioremediation of high-molecular-weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene.” , Int. Biodet. Biodeg., 45, 57-88, 2000 Juhasz, A.L., Stanley G.A. and Britz M.L., “ Metabolite repression inhibits degradation of benzo[a]pyrene and diben[a, h]anthracene by Stenotrophomonas maltophila VUN 10,003.”, J. Ind. Microbiol. Biotechnol., 28, 88-96, 2002 Koronelli, T.V., “ Principles and methods for raising the efficiency of biology degradation of hydrocarbons in the environment:review.” , Applied Biochemistry and Microbiology, 32, 519-525, 1996 Kämpfer, P., M. Steiof, P.M. Becker and W.Dott, “ Characterization of chemoheterotriphic bacteria associated with the in situ bioremediation of a waste-oil contaminated site.” , Microb. Ecol., 26, 161-188, 1993 Kurane, R. and Tomizuka, N., “ Towards new biomaterial produced by microorganism-bioflocculant and bioabsorbent.” , Nippon Kagaku Kaishi, 5, 453-463, 1992 Kurane, R., Hatamochl, K., Kakuno, T., Kiyohara, M., Tajima, T. and Taniguchi, Y., “ Purification and characterization of lipid biofloculant produced by Rhodococcus erythropolis.” , Bioscience, Biotechnology and Biochemistry, 58, 1977-1982, 1994 Kurane, R., Hatamochl, K., Kakuno, T., Kiyohara, M., Tajima, T. and Taniguchi, Y., “ Chemical structure of lipid biofloculant produced by Rhodococcus erythropolis.” , Bioscience, Biotechnology and Biochemistry, 59, 1652-1656, 1995 Lebuhn, M., Achouak, W., Schloter, M., Berge, O., Meier, H., Barakat, M., Hartmann, A., and Heulin, T., “Taxonomic characterization of Ochrobactrum sp. isolates from soil and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov.”, Int. J. Syst. Evol. Microbiol., 50, 2207-2223, 2000 McNeil, M.M. and Brown, J.M., “ The medically important aerobic actinomycetes:epidemiology and microbiology.” , Clinical Microbiology Reviews, 7, 357-417, 1994 Magoon, L.B. and Claypool, G.E., “ Two oil types on North Slope of Alaska;implications for exploration.”, Am. Assoc. Pet. Geol. Bull., 65, 644-652, 1981 Maier, R.M., Soberon-Chavez, G., “ Pseudomonas aeruginosa rhamnolipids:biosynthesis and potential applications.” , Applied Microbiology and Biotechnology, 54, 625-633, 2000 Molina, M., R. Araujo and R. E. Hodson, “ Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. Isolated from polycyclic aromatic hydrocarbon contaminated river sediments.” , Can. J. Microbiol., 45, 520-529, 1999 Mercedes Marin, Ana Pedregosa, Santiago Rios, M. Luisa Ortiz and Fernando Laborda, “ Biodegradation of Diesel and Heating Oil by Acinetobacter calcoaceticus MM5:its Possible Applications on Bioremediation.”, International Biodeterrioration and Biodegradation , 269-285, 1995 Mercade, M.E., Monleon, L., de andres, C., Rodon I., Martinez E., Espuny, M.J., Manresa, A., “ Screening and selection of surfactant-producing bateria from waste lubricating oil.” , Journal of Applied Bacteriology, 81, 161-166,1996 Mariet J. van der Werf. and Anneke M. Boot, “ Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14.” , Microbiology, 146, 1129–1141, 2000 Neu, T.R., “ Significance of bacterial surface-active compounds in interaction of bacteria with interfaces.” , Microbiological Reviews, 60, 151-166, 1996 Nelda, L.O., Jose, L.E. and Marta G. Commendatore, “ Alkane Biodegradation by a Microbial Community from Contaminated Sediments in Patagonia , Argentina.” , Int. Biodeter. Biodegr., 40 , 75-79 , 1997 Palmer, S.E., “ Effect of biodegradation and water washing on crude oil composition.”, In:Engel, M.H., Macko, S.A.(Eds), Organic Geochemistry. Plenum Press, New York, 511-533, 1993 Phillipi, G.T., “ On the depth , time and mechanism of origin of the heavy to medium gravity naphthenic crude oils.” , Geochim. Cosmochim. Acta., 41, 33-35, 1977 Parry, J.M., Turnbull, P.C.B., and Gibson, J.R., “A Colour Atlas of Bacillus Species.”, Wolfe Medical Publications Ltd, 166-170, 1988 Pirnik, M.P., Atlas, R.M., and Bartha, R., “Hydrocarcon Metabolism by Brevibacterium erythrogens : Normal and Branched Aalkanes.”, J. Bacteriol., 119, 868-878, 1974 Roy, P.K., Singh, H.D., Bhagat, S.D., and Baruah, J.N., “ Characterization of hydrocarbon emulsification and solubilization occurring during the growth of Endomycopsis lipolytica on hydrocarbons. ” , Biotechnol. Bioeng., 21, 955-974, 1979 Retledge C., “Microbial conversions of alkane and fatty acid.”, J. Am. Oil Chem. Soc., 61, 447-453, 1984 Reddy, P.G., Singh, H.D., Roy, P.K., Baruah, J.N., “ Predominant role of hydrocarbon solubilization in the microbial uptake of hydrocarbons. ” , Biotechnol. Bioeng., 24, 1241-1269, 1982 Rulkotter, J. and Wendisch, D., “ Microbial alteration of 17α (H)-hopanes in Madagascar asphalts:removal of C-10 methyl group and ring opening.” , Geochim. Cosmochim. Acta., 46, 1534-1553, 1982 Ribbons, D.W. and Eaton , R.W., “ Chemical transformations of aromatic hydrocarbons that support the growth of microorganisms.” , In Biodegradation and detoxification of environmental pollutants, 59 84 , 1982 Rehm, H.J., and Reiff, I., “Regulationder mikrobiellen alkanoxidation mit binblick auf die produktbildung.”, Acta Biotechnol., 2, 127-138, 1982 Shreve, G.S., Inguva, S., Gunnan, S., “ Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.” , Molecular and Marine Biology and Biotechnology, 4, 331-337, 1995 Song, H.G., Xiaoping, W. and Bartha, R., “ Biodegadation potential of terrestrial fuel spills.” , Appl. Environ. Microbiol., 52, 652-656, 1990 Schaefer, R.G. and Leythaeuser, D., “ Analysis of trace amounts of Hydrocarbon (C2-C8) from rocks and crude oil oils and its application in petroleum geochemistry.” Adv. Org. Geochem. 1979 (Eds A. G. Douglas and J. R. Maxwell). Pergamon Press , Oxford, 1980 Seifert, W.K. and Moldowan, J.M., “ The effect of biodegradation on steranes and triterpanes in crude oils.” , Geochim. Cosmochim. Acta., 43, 111-126, 1979 Sullivan, J.P., Dickinson, D., and Chase, H.A., “Methanotrophs , Methylosinus trichosporium OB3b, sMMO, and their Application to Bioremediation.”, Crit. Rev. Microbiol., 24, 335-373, 1998 Smith, M.R., “ The biodegradation of aromatic hydrocarbons by bacteria.” , Biodegradation, 1, 191-206, 1990 Sutherland, J.B., “ Detoxification of polycyclic aromatic hydrocarbons by funi.” , J. Ind. Microbiol., 9, 53-62, 1992 Sutherland, J.B., F. Rafii, A.A. Khan and C.E. Cerniglia, “ Mechanisms of polycyclic aromatic hydrocarbons degradation.” , In L. Y. Young and C. E. Cerniglia (ed.), Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, Inc., Boston, Mass, 269-306, 1995 Velasco, J., Romero, C., López-Goñi, I., Leiva, J., Díaz, R., and Moriyòn, I., “Evalution of the relatedness of Brucella spp. And Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp.”, Int. J. Syst. Bacteriol., 48, 759-768, 1998 Volkman, J.K., Alexander, R., Kagi, R.I. and Woodhouse, G.W., “Demethylated hopanes in petroleum geochemistry.”, Geochim. Cosmochim. Acta., 46, 785-794, 1983 Whyte, L.G., Hawari, J., Zhou, E., Bourbonnière, L., Inniss,W.E., and Greer, C.W. “ Biodegradation of Variable-Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcus sp.”, Appl. Environ. Microbiol., 64, 2578-2584, 1998 Watkinson, R.J., and Morgan, P., “ Physiology of Aliphatic Hydrocarbon- Degrading Micro-Organisms. ” Biodegradation , 1, 79-92, 1990 Yagafarova, G.G. and Skvortsova, I.N., “ A new oil-oxidizing strain of Rhodococcus erythropolis.” , Applied Biochemistry and Microbiology, 32, 207-209, 1996 Zhang, Y. and Miller, R.M., “ Enhanced octadecane dispersion and biodegradation by Pseudomonas rhamnolipid surfactant (biosurfa- ctant ).”, Appl. Environ. Microbiol., 58, 3276-3282, 1992 Zobell, C.E. and Claude, E., “ Assimilation of hydrocarbons by microorganisms.” , Advances in Enzymology , 10 , 443-486 , 1950 張緯農, 利用混合菌株(TN-4)處理異十九烷之研究, 台灣大學碩士論文, 2003 盧曉鳳, 煤油之生物分解-煉油廠廢水之實際應用, 台灣大學碩士論文, 2000 莊晟榜, Tween系列介面活性劑對微生物降解碳氫化合物之影響, 中原大學碩士論文, 2002 游宗霖, 以純化菌種Candida viswanathti處理海水中柴油多環芳香烴之研究, 中山大學碩士論文, 2004 簡建仁, 以好氧性生物濾床處理海水中柴油多環芳香烴之可行性研究, 中山大學碩士論文, 2003 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38244 | - |
| dc.description.abstract | 本實驗主要著重於混合菌株 ( TN-4 ) 與單一菌株 ( NTU1 ) 分別對於不同濃度正十四烷 ( Tetradecane )、不同初始酸鹼值條件下之正十四烷移除能力的研究,並探討 ( NTU1 ) 在不同基質培養下,是否會與正十四烷培養NTU1有相同的現象產生及NTU1攝取正十四烷的代謝過程。
由實驗得知當正十四烷濃度增加,TN-4與NTU1對於正十四烷的總移除量都也會隨著提高,但是在高濃度(2000ppmv、3000ppmv)正十四烷濃度下,因為受到培養基最低酸鹼值(pH4)的影響,致使NTU1、TN-4無法繼續降解正十四烷所以無法提高正十四烷之移除量。當初始酸鹼值調升時,適合微生物生長的範圍擴大,因此NTU1與TN-4 在高pH值下不受最低酸鹼值(pH4)的影響,導致2000ppmv的正十四烷100%被移除。另外也發現NTU1與TN-4之生長現象及移除正十四烷的能力極相似,證明了NTU1在TN-4中扮演著一個重要的角色。以脂肪酸類培養NTU1,發現跟正十四烷培養NTU1有類似的細胞聚集現象,因此基質並不會影響細菌的聚集現象。而由代謝物發現NTU1可能藉由雙末端氧化的方式,將正十四烷先氧化成琥珀酸(succinic acid),進而再氧化形成其他物質。 | zh_TW |
| dc.description.abstract | This research mainly investigated the ability of a mixed culture (TN-4) and a pure strain (NTU1) to degrade n-tetradecane under different substrate’s concentration and different medium initial acidity. Besides, this research also investigated the biodegradation of different fatty acids by utilizing NTU1 and also the analyzed of acidic organic products produced during the alkane remediation process.
Experimental results indicated that increasing concentration of tetradecane increased the tetradecane biodegradation ability of NTU1 and TN-4. However, under condition of high tetradecane concentration (2000ppmv, 3000ppmv), the ability of total alkane removal was almost similar.It may be due to the rather acidic environment (pH4), inhibiting both NTU1 and TN-4’s degradation.While the initial acidity of medium was changed to a more alkaline environment, both NTU1 and TN-4 were able to attain a better growth and completely remove the alkane. In addition, it is found that NTU1 and TN-4 attain similar tendencies for their growth and alkane biodegradability, which proves that NTU1 plays a significant role among the three strains of TN-4 . Similar aggregation behavior was observed for NTU1 grown on both tetradecane and fatty acids. Thus, NTU1 perhaps degrades tetradecane via diterminal oxidation pathway, leading to the production of succinic acid, that were found in the metabolites by HPLC analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:28:40Z (GMT). No. of bitstreams: 1 ntu-94-R92524038-1.pdf: 2230962 bytes, checksum: 4e5bd98051efaef32785cff17aee9f0b (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ 目錄……………………………………………………………….….....Ⅲ 圖目錄………………………………………………………………..Ⅴ 照片目錄…………………………………………………………..…Ⅷ 表目錄…...………………………………………………………...... Ⅹ 第一章 緒論…………………………………………………........……..1 1.1前言…………………………………………………..……………1 1.2研究目的………………………………………..………....………2 第二章 文獻回顧………………………………………..………………3 2.1石油碳氫化合物對於環境之影響………………………………..3 2.2微生物對石油碳氫化合物之降解作用…………………………..4 2.2.1石油碳氫化合物的組成與生物利用性………………………...4 2.2.2石油碳氫化合物的生物分解模式……………………………...6 2.3 微生物對碳氫化合物的代謝途徑……………………………...10 2.3.1直鏈烷及支鏈烷之代謝………………………………………..11 2.3.2環烷類及多環烷類之代謝……………………………………..17 2.4 菌株Rhodococcus erythropolis、Bacillus fusiformis與Ochrobactrum species 之特性………………………………..21 2.4.1 菌株Rhodococcus erythropolis之應用及特性……………….21 2.4.2 菌株Bacillus fusiformis與Ochrobactrum species 之應用及特性…………………………………………………24 第三章 實驗材料與方法………………………………………………26 3.1實驗菌株之組成…………………………………………………26 3.2培養基之組成……………………………………………………29 3.2.1基礎礦物培養基……………………………………………….29 3.2.2菌株活化培養基………………………………………………..30 3.2.3菌株保存培養基………………………………………………..30 3.2.4計數平板培養基………………………………………………..30 3.3實驗藥品及器材………………………………………………….33 3.4實驗方法…………………………………………………………35 3.4.1菌株之活化與培養………………………………….…………35 3.4.2生物降解異十九烷之測定…………………………………….37 3.4.3氣相層析儀校正曲線與設定及液相層析儀的設定………….39 第四章 結果與討論……………………………………………………41 4.1不同Tetradecane 濃度對於NTU1生長與包覆之影響………..42 4.2不同pH值對於NTU1生長與包覆現象的影響……….............50 4.3不同Tetradecane 濃度對於混合菌株TN-4生長與包覆現象 的影響…..……….…………………………………………………...57 4.4不同pH值對於TN-4生長與包覆現象的影響………………...64 4.5 TN-4與NTU1在不同濃度的正十四烷及不同初始酸鹼值 培養下的比較……………………………………………………70 4.5.1不同濃度正十四烷培養下的比較…………….........................70 4.5.2不同初始酸鹼值培養下的比較……………………………….74 4.6以不同基質來培養NTU1,探討其生長現象………………….77 4.7 NTU1培養基中有機酸的定性分析……………………………85 第五章 結論……………………………………………………………90 第六章 參考文獻………………………………………………………93 附錄……………………………………………………………………105 圖目錄 圖2-1 無孢子放射菌降解及攝取不同碳氫化合物…………………..13 圖2-2 微生物對直烷類之代謝路徑…………………………………..14 圖2-3 微生物對異十九烷之代謝路徑………………………………..16 圖2-4 苯之代謝途徑…………………………………………………..18 圖2-5 萘之代謝途徑…………………………………………………..19 圖2-6 Psuedomonas aeruginosa對甲苯之代謝途徑………………….20 圖2-7 Rhodococcus erythropolis DCL14對於carveol及 dihydrocarveol立體異構物之代謝途徑(a) (4R)立體異構物 (b) (4S)立體異構物…….………………………………………23 圖4-1-1 培養條件30℃、100rpm,NTU1處理不同濃度 正十四烷時之酸鹼值變化圖………………………………..44 圖4-1-2 培養條件30℃、100rpm,NTU1處理不同濃度 正十四烷時之細胞生長曲線………………………………..44 圖4-1-3 培養條件30℃、100rpm,NTU1處理不同濃度 正十四烷時,培養基中之正十四烷總移除量……………..49 圖4-2-1 培養條件30℃、100rpm、2000ppmv 正十四烷,NTU1 在不同初始酸鹼值環境時之酸鹼值變化…………………..51 圖4-2-2 培養條件30℃、100rpm,NTU1在不同初始酸鹼值 環境時之細胞生長曲線圖…………………………………..54 圖4-2-3 培養條件30℃、100rpm,NTU1在不同初始酸鹼值 環境培養時之正十四烷總移除量……………...…………...56 圖4-3-1 培養條件30℃、100rpm,TN-4處理不同濃度 正十四烷時之酸鹼值變化………………………...………...58 圖4-3-2 培養條件30℃、100rpm,TN-4處理不同濃度 正十四烷時之細胞生長量…………...……………………...60 圖4-3-3 培養條件30℃、100rpm,TN-4處理不同濃度 正十四烷時培養基中之正十四烷總移除量……………......63 圖4-4-1 培養條件30℃、100rpm、2000ppmv 正十四烷,TN-4 在不同初始酸鹼值環境時之酸鹼值變化...………………...65 圖4-4-2 培養條件30℃、100rpm、2000ppmv 正十四烷,TN-4 在不同初始酸鹼值環境時之細胞生長曲線圖……………..66 圖4-4-3 培養條件30℃、100rpm,TN-4在不同初始酸鹼值 環境培養時之正十四烷總移除量…………………………..69 圖4-5-1 NTU1與TN-4在不同正十四烷濃度下,培養基 酸鹼值變化比較圖,TN-4的異十九烷總移除量 與時間關係…………………………………………..……..70 圖4-5-2 NTU1與TN-4在不同正十四烷濃度下細胞生長量比較圖…........................................................................................71 圖4-5-3 NTU1與TN-4在不同正十四烷濃度下,培養基中 正十四烷總移除量比較圖....................................................72 圖4-5-4 NTU1與TN-4在不同初始酸鹼值下,培養基 pH值變化比較圖…...............................................................75 圖4-5-5 NTU1與TN-4在不同初始酸鹼值下細胞生長量比較圖...75 圖4-5-6 NTU1與TN-4在不同初始酸鹼值培養下正十四烷 總移除量比較圖.…..............................................................76 圖4-6-1 培養條件30℃、100rpm、基質為脂肪酸、培養NTU1 之pH變化圖.……………………………………………….79 圖4-6-2 培養條件30℃、100rpm、基質為脂肪酸、培養NTU1 之細胞生長曲線圖……………………..….………….……..80 圖4-7-1 發酵液在各時間點之HPLC分析圖…………………...…...87 圖4-7-2 各種單元酸與發酵液之液相層析圖比較 (A)甲酸(C1)、 醋酸(C2),(B)丙酸(C3)、丁酸(C4)及戊酸(C5)..…...……...88 圖4-7-3 發酵液與琥珀酸之HPLC分析比較…………………...........89 圖4-7-4 NTU1對於正十四烷可能的代謝途徑…….…………….…..89 附圖1-1在30℃、100rpm條件下,混合菌株TN-4在NB中 生長情形……………………………………………………105 附圖1-2 在30℃、100rpm條件下,單一菌株 Rhodococcus erythropolis在NB中生長情形…..…………106 附圖1-3 在30℃、100rpm條件下,單一菌株Bacillus fusiformis 在NB中生長情形……………….…………………………106 附圖1-4 在30℃、100rpm條件下,單一菌株Ochrobactrum species在NB中生長情形……………..………………….107 附圖2-1 混合菌株TN-4在NB中之細胞乾重與吸光值的關係…..107 附圖2-2 單一菌株Rhodococcus erythropolis在NB中 之細胞乾重與吸光值的關係………………............………108 附圖2-3 單一菌株Bacillus fusiformis在NB中 之細胞乾重與吸光值的關係………………………………108 附圖2-4 單一菌株Ochrobactrum species在NB中 之細胞乾重與吸光值的關係………………………………109 附圖3-1 正十四烷之GC校正曲線…………………………………109 附圖3-2 正十四烷之氣相層析圖形…………………………………110 附圖4-1 Formic acid (C1) 之HPLC層析圖……………….………111 附圖4-2 Acetic acid (C2) 之HPLC層析圖…………….………….111 附圖4-3 Propionic acid (C3) 之HPLC層析圖………..….………..112 附圖4-4 Butyric acid (C4) 之HPLC層析圖………….….…….…..112 附圖4-5 Valeric acid (C5) 之HPLC層析圖…………………….…113 附圖4-6 Oxalic acid 之HPLC層析圖………………………….….113 附圖4-7 Succinic acid 之HPLC層析圖……………………….…..114 照片目錄 照片3-1(A) Rhodococcus erythropolis…………………………………27 照片3-1(B) Bacillus fusiformis與其體內孢子………………………...27 照片3-1(C) Ochrobactrum 菌屬……………………………….………28 照片4-1-1 培養條件30℃、100rpm、初始pH6.5,1000ppmv 正十四烷培養基中,NTU1所形成的黃色顆粒現象……..45 照片4-1-2 培養條件30℃、100rpm、初始pH6.5,2000ppmv 正十四烷培養基中,NTU1所形成的乳白色顆粒現象….45 照片4-1-3 培養條件30℃、100rpm、初始pH6.5,3000ppmv 正十四烷培養基中,NTU1所形成的乳白色、湯圓 狀的顆粒現象….................................................................46 照片4-2-1 培養條件30℃、100rpm、初始pH6.5,2000ppmv 正十四烷培養基中,NTU1所形成的乳白色顆粒現象…………………………………………………..………53 照片4-2-2 培養條件30℃、100rpm、初始pH9,2000ppmv 正十四烷培養基中,NTU1所形成細小、黃色的 顆粒現象……………………………………………..……53 照片4-3-1 培養條件30℃、100rpm、初始pH6.5,1000ppmv 正十四烷培養基中,TN-4所形成的黃色顆粒現象……..60 照片4-3-2 培養條件30℃、100rpm、初始pH6.5,2000ppmv 正十四烷培養基中,TN-4所形成的乳黃色顆粒現象.…61 照片4-3-3 培養條件30℃、100rpm、初始pH6.5,3000ppmv 正十四烷培養基中,TN-4所形成的土黃色顆粒現象….61 照片4-4-1 培養條件30℃、100rpm、初始pH6.5,2000ppmv 正十四烷培養基中,TN-4所形成較大且鬆散的乳 黃色顆粒現象……………………………………………..67 照片4-4-2 培養條件30℃、100rpm、初始pH9,2000ppmv 正十四烷培養基中,TN-4所形成細小、黃色的 顆粒現象……………………………………………..……67 照片4-5-1 NTU1及TN-4在不同濃度正十四烷濃度下, 細菌包覆方式比較圖 (a) 2000ppmv正十四烷 (b) 3000ppmv正十四烷.....................................................73 照片 4-6-1丁酸( C4 )有機酸培養NTU1所形成的細菌聚集 圓形薄膜………..…………………………………………81 照片4-6-2 培養條件30℃、100rpm、基質為脂肪酸培養NTU1 所形成之細菌聚集在光學顯微鏡下之圖:(a) NTU1 聚集成一直線,(b) NTU1聚集成不規則環狀, (c) NTU1形成一大片的菌落…………………………….83 照片4-6-3 【張2003】以異十九烷培養TN-4所形成的 細菌聚集現象在光學顯微鏡下之形狀…………………..84 表目錄 表2-1為某些海灣生物降解石油的最大次表面溫度…………………..5 表2-2 微生物生產之生物乳化劑的種類………………………………7 表2-3 正烷類的溶解度以及在E. Lypolttica進行降解過程中 之溶解度…………..……………………………………………9 表2-4 有氧狀態下可降解脂肪族之微生物……..…………...……….10 表3-2(A)正十四烷液態培養基組成表………………………………...30 表3-2(B) Trace salt solution組成表……………………………………30 表3-2(C)菌株保存培養基組成表……………………………………...32 表4-1-1 培養條件為30℃、100rpm、初始pH6.5,NTU1之 正十四烷包覆量與細菌顆粒外之正十四烷含量…………..48 表4-2-1 在不同初始酸鹼值環境培養時,培養基中NTU1之 正十四烷包覆量與細菌顆粒外之正十四烷含量…………..56 表4-3-1 TN-4在不同正十四烷濃度條件下培養時,培養基中 TN-4之正十四烷包覆量與細菌顆粒外之正十四烷含量….63 表4-4-1 TN-4在不同初始酸鹼值環境培養時,培養基中 TN-4之正十四烷包覆量與細菌顆粒外之正十四烷含量….69 附表3-1 正十四烷及正十二完之氣相層析滯留時間………………110 附表4-1 各種酸的標準品在液相層析之滯留時間……………....…114 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物降解 | zh_TW |
| dc.subject | 正十四烷 | zh_TW |
| dc.subject | Biodegradation | en |
| dc.subject | n-tetradecane | en |
| dc.title | 利用單一菌株(Rhodococcus erythropolis NTU1)與混合菌株(TN-4)處理正十四烷之研究 | zh_TW |
| dc.title | Bioremediation of n-tetradecane by a pure strain(Rhodococcus erythropolis NTU1) and a mixed culture (TN-4) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王勝仕(Sheng-Shih Wang),賴進此 | |
| dc.subject.keyword | 正十四烷,生物降解, | zh_TW |
| dc.subject.keyword | n-tetradecane,Biodegradation, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
