請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3820完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊宏(Jiun-Hong Chen) | |
| dc.contributor.author | Tzu-Lun Tseng | en |
| dc.contributor.author | 曾子倫 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:37:08Z | - |
| dc.date.available | 2016-08-24 | |
| dc.date.available | 2021-05-13T08:37:08Z | - |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-02 | |
| dc.identifier.citation | Agata, K., Saito, Y., & Nakajima, E. (2007). Unifying principles of regeneration I: Epimorphosis versus morphallaxis. Dev Growth Differ, 49(2), 73-78.
Agata, K., & Umesono, Y. (2008). Brain regeneration from pluripotent stem cells in planarian. Philos Trans R Soc Lond B Biol Sci, 363(1500), 2071-2078. Andries, L., Van Hove, I., Moons, L., & De Groef, L. (2016). Matrix Metalloproteinases during Axonal Regeneration, a Multifactorial Role from Start to Finish. Mol Neurobiol. Apte SS. (2004). A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol. 36(6), 981-5. Armstrong, D. G., & Jude, E. B. (2002). The Role of Matrix Metalloproteinases in Wound Healing. Journal of the American Podiatric Medical Association, 92(1), 12-18. Bai, S. Thummel, R. Godwin, A. R. Nagase, H. Itoh, Y. Li, L. Evans, R. McDermott, J. Seiki, M. Sarras, M. P., Jr. (2005). Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol, 24(4), 247-260. Bely, A. E. (2014). Early events in annelid regeneration: a cellular perspective. Integr Comp Biol, 54(4), 688-699. Bely, A. E., Zattara, E. E., & Sikes, J. M. (2014). Regeneration in spiralians: evolutionary patterns and developmental processes. Int J Dev Biol, 58(6-8), 623-634. Brocker CN, Vasiliou V, Nebert DW. (2009). Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum Genomics., 4(1),43-55. Chang, C. H. Huang, Y. L. Shyu, M. K. Chen, S. U. Lin, C. H. Ju, T. K. Lu, J. Lee, H. (2013). Sphingosine-1-phosphate induces VEGF-C expression through a MMP-2/FGF-1/FGFR-1-dependent pathway in endothelial cells in vitro. Acta Pharmacol Sin, 34(3), 360-366. Chang, Y. M. Shih, Y. T. Chen, Y. S. Liu, C. L. Fang, W. K. Tsai, C. H. Tsai, F. J. Kuo, W. W. Lai, T. Y. Huang, C. Y. (2011). Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38. Evid Based Complement Alternat Med, 2011, 395458. Chera, S. Ghila, L. Dobretz, K. Wenger, Y. Bauer, C. Buzgariu, W. Martinou, J. C. Galliot, B. (2009). Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell, 17(2), 279-289. Cho, E., Chmielewski, S., Nolt, J., Klunk, J., Youngwirth, J., Palumbo, A., Maugle, T., Lukashova, L., Belogorodsky, D., Holmes, T., Althauser, S., Pinkney, N., Selim, A., D'Angelo, M. (2014). Extracellular matrix protection factor: a novel class of post-traumatic osteoarthritis therapeutic (922.11). The FASEB Journal, 28 (1 Supplement). Chen, C.F. (2016). The Roles of Telomerase in Regeneration during Aging and the Telomeric DNA Sequence Identification in Aeolosoma viride (1051.2). The FASEB Journal, 30 (1 Supplement) Christian Frantz, K. M. S. a. V. M. W. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123, 4195-4200. Clark, I. M. (2001). Matrix metalloproteinase protocols. 151. Fanjul-Fernandez, M., Folgueras, A. R., Cabrera, S., & Lopez-Otin, C. (2010). Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta, 1803(1), 3-19. Falconi R., Renzulli T., Zaccanti F. (2006). Survival and reproduction in Aeolosoma viride (Annelida, Aphanoneura). Hydrobiologia 564, 95–99. Ferrier, D. E. (2012). Evolutionary crossroads in developmental biology: annelids. Development, 139(15), 2643-2653. Fu, L., Das, B., Mathew, S., & Shi, Y. B. (2009). Genome-wide identification of Xenopus matrix metalloproteinases: conservation and unique duplications in amphibians. BMC Genomics, 10, 81. Hasaneen, N. A., Cao, J., Pulkoski-Gross, A., Zucker, S., & Foda, H. D. (2016). Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts. Respir Res, 17(1), 17. Ingraham, C. A., Park, G. C., Makarenkova, H. P., & Crossin, K. L. (2011). Matrix metalloproteinase (MMP)-9 induced by Wnt signaling increases the proliferation and migration of embryonic neural stem cells at low O2 levels. J Biol Chem, 286(20), 17649-17657. Isolani, M. E., Abril, J. F., Salo, E., Deri, P., Bianucci, A. M., & Batistoni, R. (2013). Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration. PLoS One, 8(2), e55649. Jackson BC, N. D., Vasiliou V. (2010). Update of human and mouse matrix metalloproteinase families. Hum Genomics., 4(3), 194-201. Jameson, S. A., Lin, Y. T., & Capel, B. (2012). Testis development requires the repression of Wnt4 by Fgf signaling. Dev Biol, 370(1), 24-32. Jopling, C., Boue, S., & Izpisua Belmonte, J. C. (2011). Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol, 12(2), 79-89. doi:10.1038/nrm3043 Junseo Oh, R. T., Shunya Kondo, Akira Mizoguchi, Eijiro Adachi, Regina M. Sasahara, Sachiko Nishimura, Yukio Imamura, Hitoshi Kitayama, David B. Alexander, Chizuka Ide, Thomas P. Horan, Tsutomu Arakawa, Hisahito Yoshida, Shin-ichi Nishikawa, Yoshifumi Itoh, Motoharu Seiki, Shigeyoshi Itohara, Chiaki Takahashi, Makoto Noda. (2001). The Membrane-Anchored MMP Inhibitor RECK Is a Key Regulator of Extracellular Matrix Integrity and Angiogenesis. Cell, 107(6), 789-800. Karan D, Lin FC, Bryan M, Ringel J, Moniaux N, Lin MF, Batra SK. (2003). Expression of ADAMs (a disintegrin and metalloproteases) and TIMP-3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas. Int J Oncol., 23(5), 1365-71. Kim D. W., Choi J. H., Park S. E., Kim S., Sapkota K., Kim S. J. (2014). Purification and characterization of a fibrinolytic enzyme from Petasites japonicas. Int J Biol Macromol. 72, 1159-67. Lee, H., Chang, K. W., Yang, H. Y., Lin, P. W., Chen, S. U., & Huang, Y. L. (2013). MT1-MMP regulates MMP-2 expression and angiogenesis-related functions in human umbilical vein endothelial cells. Biochem Biophys Res Commun, 437(2), 232-238. Li, Q., Yang, H., & Zhong, T. P. (2015). Regeneration across metazoan phylogeny: lessons from model organisms. J Genet Genomics, 42(2), 57-70. Lijnen HR. (2002). Matrix Metalloproteinases and Cellular Fibrinolytic Activity. Biochemistry (Mosc), 67(1), 92-98. Ma, J., Tang, X., Wong, P., Jacobs, B., Borden, E. C., & Bedogni, B. (2014). Noncanonical activation of Notch1 protein by membrane type 1 matrix metalloproteinase (MT1-MMP) controls melanoma cell proliferation. J Biol Chem, 289(12), 8442-8449. Munakata S, Tashiro Y, Nishida C, Sato A, Komiyama H, Shimazu H, Dhahri D, Salama Y, Eiamboonsert S, Takeda K, Yagita H, Tsuda Y, Okada Y, Nakauchi H, Sakamoto K, Heissig B, Hattori K. (2015). Inhibition of plasmin protects against colitis in mice by suppressing matrix metalloproteinase 9-mediated cytokine release from myeloid cells. Gastroenterology, 148(3), 565-578 e564. Murphy, G. (2011). Tissue inhibitors of metalloproteinases. Genome Biology, 12. Neitzel, J. J. (2010). Enzyme Catalysis: The Serine Proteases. Nature Education 3(9), 21. Nishihara T, Remacle AG, Angert M, Shubayev I, Shiryaev SA, Liu H3, Dolkas J, Chernov AV, Strongin AY, Shubayev VI. (2015). Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury. J Biol Chem, 290(6), 3693-3707. Ozeki, N. Hase, N. Hiyama, T. Yamaguchi, H. Kawai, R. Kondo, A. Nakata, K. Mogi, M (2014). IL-1beta-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway. Exp Cell Res, 328(1), 69-86. Ozeki, N. Kawai, R. Hase, N. Hiyama, T. Yamaguchi, H. Kondo, A. Nakata, K. Mogi, M. (2015). Alpha2 integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells. Exp Cell Res, 331(1), 21-37. Ozeki, N. Mogi, M. Hase, N. Hiyama, T. Yamaguchi, H. Kawai, R. Kondo, A. Nakata, K. (2016). Wnt16 Signaling Is Required for IL-1beta-Induced Matrix Metalloproteinase-13-Regulated Proliferation of Human Stem Cell-Derived Osteoblastic Cells. Int J Mol Sci, 17(2). Ozhan, G., & Weidinger, G. (2015). Wnt/beta-catenin signaling in heart regeneration. Cell Regen (Lond), 4(1), 3. Pearson, J. R. Zurita, F. Tomas-Gallardo, L. Diaz-Torres, A. Diaz de la Loza Mdel, C. Franze, K. Martin-Bermudo, M. D. Gonzalez-Reyes, A. (2016). ECM-Regulator timp is Required for Stem Cell Niche Organization and Cyst Production in the Drosophila Ovary. PLoS Genet, 12(1), e1005763. Petersen, C. P., & Reddien, P. W. (2008). Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science, 319(5861), 327-330. Porter S, Clark IM, Kevorkian L, Edwards DR. (2005). The ADAMTS metalloproteinases. Biochem J. 386(Pt 1), 15-27. Rink, J. C. (2013). Stem cell systems and regeneration in planarian. Dev Genes Evol, 223(1-2), 67-84. Rodríguez-Calvo R, Ferrán B, Alonso J, Martí-Pàmies I, Aguiló S, Calvayrac O, Rodríguez C, Martínez-González J. (2015). NR4A receptors up-regulate the antiproteinase alpha-2 macroglobulin (A2M) and modulate MMP-2 and MMP-9 in vascular smooth muscle cells. Thromb Haemost, 113(6), 1323-1334. Sanchez Alvarado, A., & Tsonis, P. A. (2006). Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet, 7(11), 873-884. Satoh, A., makanae, A., Hirata, A., & Satou, Y. (2011). Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration. Dev Biol, 355(2), 263-274. Suzuki, M., Yakushiji, N., Nakada, Y., Satoh, A., Ide, H., & Tamura, K. (2006). Limb regeneration in Xenopus laevis froglet. ScientificWorldJournal, 6 Suppl 1, 26-37. Tseng, T. L., Chen J. H. (2016). The Roles of Matrix Metalloproteinases in Anterior Regeneration in Aeolosoma viride (923.2). The FASEB Journal 30 (1 Supplement) Tseng, T. L., Chen J. H. (2014). Cloning, expression and characterization of two fibrinolytic enzymes from fresh water annelid, Aeolosoma viride. 10th International Symposium on Earthworm Ecology - ISEE 10. Visse R., Nagase H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases. Circulation Research. 92, 827-839. Wang, X., & Page-McCaw, A. (2014). A matrix metalloproteinase mediates long-distance attenuation of stem cell proliferation. J Cell Biol, 206(7), 923-936. Weidhase, M., Bleidorn, C., & Helm, C. (2014). Structure and anterior regeneration of musculature and nervous system in Cirratulus cf. cirratus (Cirratulidae, Annelida). J Morphol, 275(12), 1418-1430. Woessner, H. N. a. J. F. (1999). Matrix Metalloproteinases. The Journal of Biological Chemistry, 274, 21491-21494. Wong, H. L., Jin, G., Cao, R., Zhang, S., Cao, Y., & Zhou, Z. (2016). MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun, 7, 10824. Wu J, Lu M1, Li Y, Shang YK, Wang SJ, Meng Y, Wang Z, Li ZS, Chen H, Chen ZN, Bian H. (2016). Regulation of a TGF-beta1-CD147 self-sustaining network in the differentiation plasticity of hepatocellular carcinoma cells. Oncogene. Wu X, Deng G, Hao X, Li Y, Zeng J, Ma C, He Y, Liu X, Wang Y. (2014). A caspase-dependent pathway is involved in Wnt/beta-catenin signaling promoted apoptosis in Bacillus Calmette-Guerin infected RAW264.7 macrophages. Int J Mol Sci, 15(3), 5045-5062. Yong, V. W. (2005). Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci, 6(12), 931-944. Zhang, Z., Song, T., Jin, Y., Pan, J., Zhang, L., Wang, L., & Li, P. (2009). Epidermal growth factor receptor regulates MT1-MMP and MMP-2 synthesis in SiHa cells via both PI3-K/AKT and MAPK/ERK pathways. Int J Gynecol Cancer, 19(6), 998-1003. Zoran, M. J. (2010). Regeneration in Annelids. doi:10.1002/9780470015902.a0022103 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3820 | - |
| dc.description.abstract | 蛋白酶參與在生物體內許多重要的生理機制,像是消化、凝血及組織重組等。而在眾多蛋白酶中,金屬蛋白酶是一群具有最多元酵素功能的蛋白酶,其中基質金屬蛋白酶(Matrix metalloproteinase, MMP)、ADAM及ADAMST為金屬蛋白酶中主要的三個類群,他們都需要金屬離子的協助才能具有正常的酵素活性。而MMP是目前具有最多研究的金屬蛋白酶,他們是主要調控細胞外間質(Extracellular matrix)的分解及構成,已被發現參與在發育及再生過程中的細胞增生及移動。雖然在斑馬魚及渦蟲中MMP已被發現參與再生的過程,但MMP在再生中的機制仍不甚清楚。由於淡水生的環節動物瓢體蟲 (Aeolosoma viride) 具有很強的再生能力,並且使用和脊椎動物類似的機制來進行再生,因此在此篇研究中被用來進行MMP與再生的研究。在此論文的研究結果中,選殖出瓢體蟲中三種基質金屬蛋白酶,其中兩種是鑲嵌在膜上的MMP (MT-MMP)而另外一種是分泌型的MMP。其中兩種MMP在再生早期會高量表現於新生成的組織中,顯示該兩種MMP可能參與在再生的早期過程。進一步去檢測在再生過程中MMP的活性變化,發現到MMP在再生24小時的時候會在新再生組織中具有很高的酵素活性。再以MMP活性的抑制劑GM6001去抑制在再生中MMP的活性,來了解MMP在再生過程中的功能,發現到只有在再生0-12小時內抑制酵素活性會顯著地降低再生的成功率。依據這些結果都確實MMP參與了瓢體蟲的早期頭部再生。 | zh_TW |
| dc.description.abstract | Proteases play important roles in many biological processes. Among these proteases, metalloproteases represent the largest catalytic classes of proteases in many organisms. The three major classes of metalloproteinases are ADAMs (a disintegrin and metalloproteinase domain), ADAMTS (ADAMs with thrombospondin domain), and MMP (matrix metalloproteinase). MMPs play key roles in turnover of extracellular matrix (ECM) and serve as important regulators of cell-ECM interaction during development and regeneration. Although MMPs were found involved in the regeneration in planarian and zebrafish, there is a knowledge gap between planarian and vertebrates. Therefore, the annelid was chosen to fill the gap due to the similarity of regenerative mechanism to vertebrate. In this study, a fresh water annelid with high regenerative ability, Aeolosoma viride, was used to solve this question. In the NGS transcriptome data of A. viride, three MMPs, named as Avi-MMP14, Avi-MMP21 and Avi-MMP17, and one MMP-like gene, Avi-MMP-like gene, were found. Gene expression of Avi-mmp21 and Avi-mmp17 significantly increased at the early stage of anterior regeneration. And, gene expression of Avi-mmp-like gene significantly increased at the late stage of anterior regeneration. However, Avi-mmp14 showed no differences in expression during anterior regeneration. On the other hand, SDS-PAGE gelatin zymography showed the highest protease activity was detected at 24 hours post amputation (hpa) blastema. Furthermore, after treated with GM6001, a MMPs inhibitor, at 0-12 hpa, regeneration was inhibited. These results suggested that MMPs have some effects on early stage of anterior regeneration, and Avi-MMP17 and Avi-MMP21 might be the key factors in this processes. The relationship between MMPs and the regulation of MMPs needs further research to be resolved. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:37:08Z (GMT). No. of bitstreams: 1 ntu-105-R03b21001-1.pdf: 4762514 bytes, checksum: 05c259d4a47eeae04c1dfb0026cd1280 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv Introduction 1 Protease 1 Roles of MMPs in development and regeneration 2 Regeneration 4 Aeolosoma viride in regeneration research 7 Aims 8 Material and method 9 Aeolosoma viride 9 RNA extraction 9 Reverse transcription 10 Gene cloning 11 Real-time quantitative PCR 11 In situ hybridization 12 Zymograph 14 Statistic 14 Results 15 Sequencing of Avi-mmp14, Avi-mmp17, Avi-mmp21 and a MMP-like gene, Avi-mmp-like gene 15 The quantification gene expression of mmps in A. viride during anterior regeneration 17 Gene expression of Avi-mmps at the blastema during anterior regeneration 18 The enzymatic activity of Avi-MMPs at the early stage of anterior regeneration 19 Inhibition of the activity of MMPs causing impaired regeneration 20 The model of MMPs involved in the anterior regeneration in A. viride 21 Discussion 23 Reference 28 Figures 38 Figure 1: Sequences of Avi-mmps. 44 Figure 2: Phylogenetic tree of Avi-MMPs. 48 Figure 3: A MMP-like gene, Avi-MMP-like gene found related to anterior regeneration in A. viride. 50 Figure 4: Gene expression of Avi-mmps during the anterior regeneration. 52 Figure 5: Avi-mmp14 expressing localization during the anterior regeneration. 54 Figure 6: Avi-mmp17 expressing localization during the anterior regeneration. 56 Figure 7: Avi-mmp21 expressing localization during the anterior regeneration. 58 Figure 8: Zymograph showed the active MMPs in A. viride during regeneration. 60 Figure 9: The inhibitory effect of MMP inhibitor, GM6001, on anterior regeneration in A. viride. 63 Figure 10: The model of MMPs involved in the anterior regeneration in A. viride. 65 Tables 66 Table 1: Primers used for cloning Avi-mmp 66 Table 2: Primers used for the RNA probes 67 Table 3: Primers used for qPCR 67 | |
| dc.language.iso | en | |
| dc.subject | GM6001 | zh_TW |
| dc.subject | 瓢體蟲 | zh_TW |
| dc.subject | 再生 | zh_TW |
| dc.subject | 基質金屬蛋白? | zh_TW |
| dc.subject | GM6001 | en |
| dc.subject | Aeolosoma viride | en |
| dc.subject | regeneration | en |
| dc.subject | matrix metalloproteinases | en |
| dc.title | 基質金屬蛋白酶在瓢體蟲Aeolosoma viride前端再生扮演的角色 | zh_TW |
| dc.title | The Roles of Matrix Metalloproteinases in Anterior Regeneration in Aeolosoma viride | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱家瑩(Chia-Ying Chu),郭典翰(Dian-Han Kuo) | |
| dc.subject.keyword | 瓢體蟲,再生,基質金屬蛋白?,GM6001, | zh_TW |
| dc.subject.keyword | Aeolosoma viride,regeneration,matrix metalloproteinases,GM6001, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201601565 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 4.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
