請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38207
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張?仁 | |
dc.contributor.author | Ju-Yi Chien | en |
dc.contributor.author | 簡如一 | zh_TW |
dc.date.accessioned | 2021-06-13T16:27:58Z | - |
dc.date.available | 2011-07-26 | |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-19 | |
dc.identifier.citation | 1. Tan, Q., et al., Activation mutants in yeast RNA polymerase II subunit RPB3 provide evidence for a structurally conserved surface required for activation in eukaryotes and bacteria. Genes Dev, 2000. 14(3): p. 339-48.
2. Cramer, P., et al., Architecture of RNA polymerase II and implications for the transcription mechanism. Science, 2000. 288(5466): p. 640-9. 3. Minakhin, L., et al., Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci U S A, 2001. 98(3): p. 892-7. 4. Hampsey, M., Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev, 1998. 62(2): p. 465-503. 5. Woychik, N.A. and R.A. Young, RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth. Mol Cell Biol, 1989. 9(7): p. 2854-9. 6. Woychik, N.A., W.S. Lane, and R.A. Young, Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes. J Biol Chem, 1991. 266(28): p. 19053-5. 7. Rosenheck, S. and M. Choder, Rpb4, a subunit of RNA polymerase II, enables the enzyme to transcribe at temperature extremes in vitro. Journal of Bacteriology, 1998. 180(23): p. 6187-6192. 8. Miyao, T., J.D. Barnett, and N.A. Woychik, Deletion of the RNA polymerase subunit RPB4 acts as a global, not stress-specific, shut-off switch for RNA polymerase II transcription at high temperatures. J Biol Chem, 2001. 276(49): p. 46408-13. 9. Choder, M. and R.A. Young, A portion of RNA polymerase II molecules has a component essential for stress responses and stress survival. Mol Cell Biol, 1993. 13(11): p. 6984-91. 10. Kolodziej, P.A., et al., RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol Cell Biol, 1990. 10(5): p. 1915-20. 11. Edwards, A.M., et al., Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J Biol Chem, 1991. 266(1): p. 71-5. 12. Orlicky, S.M., et al., Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J Biol Chem, 2001. 276(13): p. 10097-102. 13. Pillai, B., Rpb4, a Non-essential Subunit of Core RNA Polymerase II of Saccharomyces cerevisiae Is Important for Activated Transcription of a Subset of Genes. Journal of Biological Chemistry, 2001. 276(33): p. 30641-30647. 14. Gasch, A.P., et al., Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell, 2000. 11(12): p. 4241-57. 15. Causton, H.C., et al., Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell, 2001. 12(2): p. 323-37. 16. Pillai, B., et al., Whole Genome Expression Profiles of Yeast RNA Polymerase II Core Subunit, Rpb4, in Stress and Nonstress Conditions. Journal of Biological Chemistry, 2002. 278(5): p. 3339-3346. 17. Mitsuzawa, H., E. Kanda, and A. Ishihama, Rpb7 subunit of RNA polymerase II interacts with an RNA-binding protein involved in processing of transcripts. Nucleic Acids Res, 2003. 31(16): p. 4696-701. 18. Kimura, M., H. Suzuki, and A. Ishihama, Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II. Mol Cell Biol, 2002. 22(5): p. 1577-88. 19. Runner, V.M., V. Podolny, and S. Buratowski, The Rpb4 Subunit of RNA Polymerase II Contributes to Cotranscriptional Recruitment of 3' Processing Factors. Molecular and Cellular Biology, 2008. 28(6): p. 1883-1891. 20. Cai, G., et al., Mediator Head module structure and functional interactions. Nature Structural & Molecular Biology, 2010. 17(3): p. 273-279. 21. Hirtreiter, A., D. Grohmann, and F. Werner, Molecular mechanisms of RNA polymerase--the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Research, 2009. 38(2): p. 585-596. 22. Farago, M., Rpb4p, a Subunit of RNA Polymerase II, Mediates mRNA Export during Stress. Molecular Biology of the Cell, 2003. 14(7): p. 2744-2755. 23. Selitrennik, M., et al., Nucleocytoplasmic Shuttling of the Rpb4p and Rpb7p Subunits of Saccharomyces cerevisiae RNA Polymerase II by Two Pathways. Eukaryotic Cell, 2006. 5(12): p. 2092-2103. 24. Lotan, R., et al., The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev, 2005. 19(24): p. 3004-16. 25. Harel-Sharvit, L., et al., RNA Polymerase II Subunits Link Transcription and mRNA Decay to Translation. Cell, 2010. 143(4): p. 552-563. 26. Goler-Baron, V., et al., Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes & Development, 2008. 22(15): p. 2022-2027. 27. Preker, P. and T.H. Jensen, Translation by Remote Control. Cell, 2010. 143(4): p. 501-502. 28. Parker, R. and H. Song, The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol, 2004. 11(2): p. 121-7. 29. Houseley, J., J. LaCava, and D. Tollervey, RNA-quality control by the exosome. Nat Rev Mol Cell Biol, 2006. 7(7): p. 529-39. 30. Liu, H., et al., The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. Embo Journal, 2002. 21(17): p. 4699-708. 31. van Dijk, E., et al., Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. Embo Journal, 2002. 21(24): p. 6915-24. 32. Tharun, S., et al., Yeast Sm-like proteins function in mRNA decapping and decay. Nature, 2000. 404(6777): p. 515-8. 33. Tharun, S. and R. Parker, Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell, 2001. 8(5): p. 1075-83. 34. Kshirsagar, M. and R. Parker, Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae. Genetics, 2004. 166(2): p. 729-39. 35. Coller, J.M., et al., The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA, 2001. 7(12): p. 1717-27. 36. Bashkirov, V.I., et al., A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. Journal of Cell Biology, 1997. 136(4): p. 761-73. 37. Sheth, U. and R. Parker, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science, 2003. 300(5620): p. 805-8. 38. Cougot, N., S. Babajko, and B. Seraphin, Cytoplasmic foci are sites of mRNA decay in human cells. Journal of Cell Biology, 2004. 165(1): p. 31-40. 39. Brengues, M., D. Teixeira, and R. Parker, Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science, 2005. 310(5747): p. 486-9. 40. Bhattacharyya, S.N., et al., Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell, 2006. 125(6): p. 1111-24. 41. Vinciguerra, P. and F. Stutz, mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol, 2004. 16(3): p. 285-92. 42. Coller, J. and R. Parker, Eukaryotic mRNA decapping. Annu Rev Biochem, 2004. 73: p. 861-90. 43. Armache, K.J., H. Kettenberger, and P. Cramer, Architecture of initiation-competent 12-subunit RNA polymerase II. Proc Natl Acad Sci U S A, 2003. 100(12): p. 6964-8. 44. Bushnell, D.A. and R.D. Kornberg, Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. Proc Natl Acad Sci U S A, 2003. 100(12): p. 6969-73. 45. Todone, F., et al., Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Molecular Cell, 2001. 8(5): p. 1137-1143. 46. Armache, K.J., Structures of Complete RNA Polymerase II and Its Subcomplex, Rpb4/7. Journal of Biological Chemistry, 2005. 280(8): p. 7131-7134. 47. Meka, H., Crystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase II. Nucleic Acids Research, 2005. 33(19): p. 6435-6444. 48. Sampath, V., The Conserved and Non-conserved Regions of Rpb4 Are Involved in Multiple Phenotypes in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003. 278(51): p. 51566-51576. 49. Sareen, A., et al., Mapping the interaction site of Rpb4 and Rpb7 subunits of RNA polymerase II in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2005. 332(3): p. 763-770. 50. Khazak, V., et al., Analysis of the interaction of the novel RNA polymerase II (pol II) subunit hsRPB4 with its partner hsRPB7 and with pol II. Mol Cell Biol, 1998. 18(4): p. 1935-45. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38207 | - |
dc.description.abstract | Gene expression involves several distinct stages, which are tightly controlled and coordinated. Although the detailed mechanism of each stage is well established, we are still lacking the linkage of how different processes are connected. In Saccharomyces cerevisiae, Rpb4p, which was discovered as a RNA polymerase subunit, is reported to involve in mRNA processing, mRNA export, translation and mRNA degradation, suggesting a role of coordinator. In this study, we aimed to explore the functional characters of RPB4 in both transcription and mRNA degradation in mammalian system. We found that RPB4 located at P-bodies, which accommodate translationally repressed mRNPs and proteins involved in mRNA degradation. In addition, RPB4 interacted with DCP1a, DCP2, DDX6, EDC3 and CAF1a in RNA-independent manner. By tethering RPB4 to luciferase reporter mRNA, we further provided evidences that RPB4 is functionally related to mRNA decay machinery. Interestingly, we observed that RPB4 can translocate from cytoplasm to nucleus and associate with phosporylated RNA polymerase II in response to heat shock stress. Knockdown of RPB4 resulted in down-regulation of proteins involved in mRNA metabolism. Taken together, these findings imply that RPB4 might modulate specific class mRNAs’ turnover by coordinating their metabolic processes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:27:58Z (GMT). No. of bitstreams: 1 ntu-100-R98b46002-1.pdf: 1610836 bytes, checksum: d8cd9ee28a6dc4b18796d4b518378cc7 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 摘要……………………………………………………………………………………...i
Abstract………………………………………………………………………...………ii Contents………………………………………………………………………..……….iv I. Introduction RPB4 in transcription....................................................................................................1 RPB4 in post-transcription............................................................................................4 Deadenylation-dependent degradation pathway………………………………………5 Processing bodies..........................................................................................................6 II. Materials and Methods……………………………………………………………..8 III. Results……………………………………………………………………………..14 IV. Discussion ………….…………………………………………………………...…20 V. Figures Figure 1. RPB4 physically interacted with P-body components.................................26 Figure 2. RPB4 down-regulated the luciferase reporter expression............................29 Figure 3. Truncates of RPB4 had less interaction with P-body proteins…..….…….31. Figure 4. Knockdown P-body proteins restored the decrease of luciferase activities.34 Figure 5. RPB4 associated with RNA polymerase II in response to heat shock.……37 VI. Refferences ……………………………………………………………………......39 | |
dc.language.iso | en | |
dc.title | 核醣核酸聚合酶第四次單元RPB4在轉錄及訊息核醣核酸降解過程之功能分析 | zh_TW |
dc.title | Functional Characterization of RNA Polymerase II Subunit RPB4 in Transcription and mRNA Decay Machinery | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂勝春,徐駿森,顏雪琪 | |
dc.subject.keyword | 核醣核酸聚合酶,轉錄,處理體,核醣核酸降解,訊息核醣核酸代謝, | zh_TW |
dc.subject.keyword | RNA polymerase II,transcription,P-body,mRNA decay,mRNA meatabolism, | en |
dc.relation.page | 42 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-19 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。